研究生: |
陳勁凱 Chen, Chin-Kai |
---|---|
論文名稱: |
基於人臉網格的一種對於化妝與跨年齡的臉部辨識 A Face Mesh-ased Recognition of Makeup And Cross-age Faces |
指導教授: |
陳美勇
Chen, Mei-Yung |
口試委員: |
陳美勇
Chen, Mei-Yung 王俊勝 Wang, Jiun-Shen 張文哲 Chang, Wen-Jer 練光祐 Lian, Kuang-Yow |
口試日期: | 2024/07/31 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | Mediapipe 、Blazeface 、Facemesh 、跨年龄 、化妆 、人臉識別 、主成分分析 、類神經網路 |
英文關鍵詞: | Mediapipe, Blazeface, Facemesh, Cross-age, Makeup, Face Recognition, Principal Component Analysis, Neural Networks |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401798 |
論文種類: | 學術論文 |
相關次數: | 點閱:88 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臉部辨識是一種重要的生物識別技術,在多種應用中得到廣泛使用。然而,化妝以及年齡變化會使人臉發生變化,進而影響人臉上的特徵,從而降低臉部辨識的準確性。為了解決化妝以及年齡變化造成的臉部辨識問題,本論文提出了一種基于MediaPipe的FaceMesh和類神經網路的臉部辨識方法,以解決化妝以及年齡變化造成的臉部辨識問題,該方法將在Python內部逐步構成。MediaPipe FaceMesh模型的人臉偵測是以 BlazeFace 人臉偵測器為基礎,該偵測器會對圖像進行操作並計算人臉位置。偵測到人臉後,FaceMesh模型會使用一個自定義殘差神經網絡提取名為landmark的臉部特徵,並利用歐式距離和landmark蘊含的座標資料計算指定的landmark之間的距離以及比值,作為訓練用的臉部特徵。主成分分析用於提高準確率,降低過擬合現象。類神經網路用於訓練模型。實驗結果表明,該方法在化妝以及年齡變化下的臉部辨識有一定的準確性,具有一定的應用價值。
Face recognition is an important biometric technology widely used in various applications. However, makeup and age changes can alter facial features, reducing the accuracy of face recognition. To address the issues caused by makeup and age changes, this paper proposes a face recognition method based on MediaPipe's FaceMesh and neural networks. This method aims to tackle the problems posed by makeup and age changes, and will be implemented step by step in Python.The face detection in the MediaPipe FaceMesh model is based on the BlazeFace face detector, which processes images and calculates the position of faces. After detecting a face, the FaceMesh model uses a custom residual neural network to extract facial features called landmarks. Euclidean distances and the coordinates embedded in these landmarks are used to calculate distances and ratios between specified landmarks as facial features for training. Principal Component Analysis (PCA) is employed to improve accuracy and reduce overfitting. Neural networks are then used to train the model.Experimental results demonstrate that this method achieves a certain level of accuracy in face recognition under makeup and age changes, showing potential for practical applications.
"Apple's Face ID: Cheat sheet". TechRepublic. June 11, 2020. Retrieved 2020-12-07.
“One ID”, GUNNEBO, blog.gunneboentrancecontrol.com/one-id-already-bringing-benefits-to-airports-airlines-and-passengers
Ueda S, Koyama T. Influence of make-up on facial recognition. Perception. 2010;39(2):260-4. doi: 10.1068/p6634. PMID: 20402247.
A. Dantcheva, C. Chen and A. Ross, "Can facial cosmetics affect the matching accuracy of face recognition systems?," 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), Arlington, VA, USA, 2012, pp. 391-398.
A. Lanitis, C. J. Taylor and T. F. Cootes, "Toward automatic simulation of aging effects on face images," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp. 442-455, April 2002.
L. Boussaad and A. Boucetta, "The aging effects on face recognition algorithms: the accuracy according to age groups and age gaps," 2021 International Conference on Artificial Intelligence for Cyber Security Systems and Privacy (AI-CSP), El Oued, Algeria, 2021, pp. 1-6.
U. Park, Y. Tong and A. K. Jain, "Age-Invariant Face Recognition," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 5, pp. 947-954, May 2010, doi: 10.1109/TPAMI.2010.14.
Z. Li, D. Gong, X. Li and D. Tao, "Aging Face Recognition: A Hierarchical Learning Model Based on Local Patterns Selection," in IEEE Transactions on Image Processing, vol. 25, no. 5, pp. 2146-2154, May 2016..
Sajid, Muhammad & Ali, Nouman & Dar, Saadat & Ratyal, Naeem Iqbal & Butt, Asif & Zafar, Bushra & Shafique, Tamoor & Baig, Mirza & Riaz, Imran & Baig, Shahbaz. (2018). Data Augmentation-Assisted Makeup-Invariant Face Recognition. Mathematical Problems in Engineering. 2018. 1-10.10.1155/2018/2850632.
Lugaresi, C., Tang, J., Nash, H., McClanahan, C., Uboweja, E., Hays, M., Zhang, F., Chang, C., Yong, M.G., Lee, J., Chang, W., Hua, W., Georg, M., & Grundmann, M. (2019). MediaPipe: A Framework for Building Perception Pipelines. arXiv, abs/1906.08172.
Bazarevsky, Valentin, et al. "Blazeface: Sub-millisecond neural face detection on mobile gpus." arXiv preprint arXiv:1907.05047 (2019).
Kim D.H., Baddar W., Jang J., Ro Y.M, "Multi-objective based Spatio-temporal feature representation learning robust to expression intensity variations for facial expression recognition," IEEE Transactions on Affective Computing, pp.99, April 2017.
Kartynnik, Yury, et al. "Real-time facial surface geometry from monocular video on mobile GPUs." arXiv preprint arXiv:1907.06724 (2019).
MediaPipe FaceMesh, wiki, github, github.com/google/mediapipe/wiki/MediaPipe-Face-Mesh
“Ibrikci, Turgay; Brandt, M.E.; Wang, Guanyu; Acikkar, Mustafa (23–26 October 2002). Mahalanobis distance with radial basis function network on protein secondary structures. Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society. Engineering in Medicine and Biology Society, Proceedings of the Annual International Conference of the IEEE. Vol. 3. Houston, TX, USA (published 6 January 2003). pp. 2184–5.
Yee, Paul V. & Haykin, Simon (2001). Regularized Radial Basis Function Networks: Theory and Applications. John Wiley. ISBN 0-471-35349-3.
Fasshauer, Gregory E. (2007). Meshfree Approximation Methods with MATLAB. Singapore: World Scientific Publishing Co. Pte. Ltd. p. 37. ISBN 9789812706331.
Yin-Wen Chang, Cho-Jui Hsieh, Kai-Wei Chang, Michael Ringgaard and Chih-Jen Lin (2010). Training and testing low-degree polynomial data mappings via linear SVM. J. Machine Learning Research 11: 1471–1490.
Dagher, Issam & Barbara, Dany. (2021). Facial age estimation using pre-trained CNN and transfer learning. Multimedia Tools and Applications. 80. 1-12. 10.1007/s11042-021-10739-w.
B. -C. Chen, C. -S. Chen and W. H. Hsu, "Face Recognition and Retrieval Using Cross-Age Reference Coding With Cross-Age Celebrity Dataset," in IEEE Transactions on Multimedia, vol. 17, no. 6, pp. 804-815, June 2015, doi: 10.1109/TMM.2015.2420374.
Wenxuan Wang, Yanwei Fu, Xuelin Qian, Yu-Gang Jiang, Qi Tian, Xiangyang Xue. FMMu-Net: Face Morphological Multi-branch Network for Makeup-invariant Face Verification, IEEE Conference on Computer Vision and Pattern Recognition, 2020.
G. Mahalingam, K. Ricanek and A. M. Albert, "Investigating the Periocular-Based Face Recognition Across Gender Transformation," in IEEE Transactions on Information Forensics and Security, vol. 9, no. 12, pp. 2180-2192, Dec. 2014.
Smith, Karl (2013), Precalculus: A Functional Approach to Graphing and Problem Solving, Jones & Bartlett Publishers, p. 8.
Cohen, David (2004), Precalculus: A Problems-Oriented Approach (6th ed.), Cengage Learning, p. 698, ISBN 978-0-534-40212-9
Tabak, John (2014), Geometry: The Language of Space and Form, Facts on File math library, Infobase Publishing, p. 150, ISBN 978-0-8160-6876-0
Jolliffe, I. T. (2002). Principal Component Analysis. Springer Series in Statistics. New York: Springer-Verlag.
Jolliffe, Ian T.; Cadima, Jorge (2016-04-13). "Principal component analysis: a review and recent developments". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 374 (2065): 20150202.
"PyTorch – About". pytorch.org. Archived from the original on 2018-06-15. Retrieved 2018-06-11.
“PyTorch”, github, 1 Aug,2024, github.com/pytorch/pytorch/blob/main/README.md
“CUDA 總複習:CUDA 入門”, NVIDIA官方網站, 10 Qct.2020, blogs.nvidia.com.tw/blog/cuda-refresher-getting-started-with-cuda/
“運用 cuDNN 深度神經網路函式庫加速機器學習”, NVIDIA官方網站7 Sep.2014,blogs.nvidia.com.tw/blog/accelerate-machine-learning-cudnn-deep-neural-network-library/
Stehman, Stephen V. (1997). "Selecting and interpreting measures of thematic classification accuracy". Remote Sensing of Environment. 62 (1): 77–89.
S. Thakur, J. K. Sing, D. K. Basu, M. Nasipuri and M. Kundu, "Face Recognition Using Principal Component Analysis and RBF Neural Networks," 2008 First International Conference on Emerging Trends in Engineering and Technology, Nagpur, India, 2008, pp. 695-700, doi: 10.1109/ICETET.2008.104.
Byung-Joo Oh, "Face recognition by using neural network classifiers based on PCA and LDA," 2005 IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, HI, 2005, pp. 1699-1703 Vol. 2, doi: 10.1109/ICSMC.2005.1571393.
Radha, V. and N. Nallammal. “Neural Network Based Face Recognition Using RBFN Classifier.” (2011).
Z. Li, D. Gong, X. Li and D. Tao, "Aging Face Recognition: A Hierarchical Learning Model Based on Local Patterns Selection," in IEEE Transactions on Image Processing, vol. 25, no. 5, pp. 2146-2154, May 2016.
B. -C. Chen, C. -S. Chen and W. H. Hsu, "Face Recognition and Retrieval Using Cross-Age Reference Coding With Cross-Age Celebrity Dataset," in IEEE Transactions on Multimedia, vol. 17, no. 6, pp. 804-815, June 2015.
J. Yu and L. Jing, "A Joint Multi-Task CNN for Cross-Age Face Recognition," 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 2018, pp. 2411-2415.
R. K. Tripathi and A. Singh Jalal, "Make-Up Invariant Face Recognition under Uncontrolled Environment," 2021 3rd International Conference on Signal Processing and Communication (ICPSC), Coimbatore, India, 2021, pp. 459-463.
K. Ferchichi, H. Ghazouani and W. Barhoumi, "Efficient Face Verification Under Makeup Changes Using Few Salient Regions," 2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA), Tangier, Morocco, 2021, pp. 1-8.
Ismaila Adeniyi Kamil and Aliu Sunday Are. 2018. Makeup-Invariant Face Recognition using combined Gabor Filter Bank and Histogram of Oriented Gradients. In Proceedings of the 2nd International Conference on Advances in Image Processing (ICAIP '18). Association for Computing Machinery, New York, NY, USA, 1–5.