簡易檢索 / 詳目顯示

研究生: 陳律安
Chen, Lu-An
論文名稱: 藍光照射合併光敏感物質A2E對人類視網膜上皮細胞之傷害效應
The injury effects of blue light exposure in A2E-loaded human retinal pigment epithelium cells
指導教授: 吳啟豪
Wu, Chi-Hao
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 116
中文關鍵詞: 藍光A2E視網膜上皮細胞氧化壓力老化
英文關鍵詞: blue light, A2E, retinal pigment epithelium cell, oxidative stress, aging
DOI URL: http://doi.org/10.6345/NTNU201900979
論文種類: 學術論文
相關次數: 點閱:367下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A2E (N-retinylidene-N-retinylethanolamine)為眼睛視循環之維生素A衍生物,可隨人體老化與褐脂質 (lipofuscin)漸進式地堆積於視網膜中,為眼底隱結 (drusen)形成的關鍵因子。已知A2E具光敏感性,經光線照射後可誘發活性氧自由基 (reactive oxygen species, ROS)生成,據統計現代人每日使用3C裝置的時間可長達9小時,暴露於藍光的風險增加。藍光因其高強度的光化學能量及高穿透特性可穿透瞳孔直達眼底視網膜,激發A2E光氧化反應,造成視網膜上皮細胞 (retinal pigment epithelium, RPE)損傷,進而導致黃斑部病變與視力下降。本研究目的在探討A2E合併藍光照射後對RPE細胞之負面效應。首先利用silica gel-C18管柱層析及陽離子交換樹脂進行A2E化學合成,並以1H-NMR及LC-MS/MS進行A2E結構鑑定。細胞試驗則選用人類視網膜上皮細胞株ARPE-19,分別探討該細胞經(1) 不同A2E作用劑量;(2) 不同藍光照射時間,以及(3) A2E合併藍光照射等條件下,對ARPE-19細胞之影響。利用CM-H2DCFDA與MitoSOX Red染劑分別進行胞內及粒線體ROS生成之分析;以SA-β-Gal kit判斷細胞老化程度。結果顯示,A2E於生理濃度 (9 μM)下,若合併藍光照射可顯著抑制ARPE-19之細胞增生與造成細胞死亡;同時可促進胞內及粒線體ROS生成並加速細胞老化;而介入維生素E (vitamin E)可減緩上述之負面效應。此顯示藍光照射所造成之RPE細胞損傷可能與A2E誘發之氧化壓力有關。綜合上述,本研究結果有助於建構藍光-視網膜損傷之細胞實驗模式,未來可應用於篩選護眼機能性成分,亦可作為開發護眼機能性食品之參考。

    A2E (N-retinylidene-N-retinylethanolamine) is a vitamin A derivative of the visual cycle which accumulated with lipofuscin and gradually deposited at the retina in the process of aging. Besides, A2E also plays a role in the formation of drusen. It is well-known that A2E is a photosensitive agent, which induced the generation of reactive oxygen species (ROS) after irradiated with light. Recently, people spend at least nine hours using electronic products, such as smartphones, tablets and computers in daily life. Blue light is one of high intensity energy, which can penetrate the pupil to the retina and induce the photooxidative reaction of A2E. Consequently, causing damage to retinal pigment epithelium cells (RPE) and impairing the vision or leading to macular degeneration. The purpose of this study is to investigate injury effects of blue light exposure in A2E-loaded human retinal pigment epithelium cells. First, we synthesize A2E by silica-C18 column chromatography, then purified A2E by cation exchange resin and identified A2E structure by 1H-NMR and LC-MS/MS. Then, we used human retinal epithelial cell line, ARPE-19, to investigate the effects of (1) different dose of A2E; (2) different irradiation time of blue light, and (3) A2E with blue light irradiation. For further analysis, we investigated the changes in physiology between different blue light exposure time points in A2E-load ARPE-19 cells. The production of intracellular ROS and mitochondrial ROS were analyzed by CM-H2DCFDA and MitoSOX Red dye respectively. Cellular senescence was detected by senescence-associated β-galactosidase staining kit (SA-β-Gal). Then results have shown that the A2E combined with blue light irradiation significantly induce cytotoxicity, intracellular ROS and mitochondrial ROS production of ARPE-19 cells. Additionally, cellular senescence increased when raised A2E concentration and prolonged blue light irradiation time. While intervention of vitamin E can alleviate the negative effects as mentioned above, showing that the damage of RPE cells caused by blue light irradiation possibly related to A2E-induced ROS. Our study contributes to establish a injury cell model of blue light in retina, which can be used to screen for effective protective components or used as a reference for the development of eye-protective functional foods in the future.

    中文摘要 i 英文摘要 ii 誌謝 iv 目錄 v 表次 ix 圖次 x 縮寫表 xii 第一章 前言 1 第二章 文獻探討 3 第一節 眼球基本構造 3 一、鞏膜 (Sclera) 4 二、角膜 (Cornea) 4 三、虹膜 (Iris) 4 四、晶狀體 (Lens) 4 五、視網膜 (Retina) 5 六、脈絡膜 (Choroid) 5 第二節 視網膜 6 一、視網膜構造 6 (一)視網膜色素上皮細胞 (Retinal pigment epithelium cell, RPE) 7 (二)感光細胞 (Photoreceptor cell) 7 (三)外界膜 (External limiting membrane, ELM) 10 (四)外核層 (Outer nuclear layer, ONL) 10 (五)外叢層 (Outer plexiform layer, OPL) 10 (六)內核層 (Inner nuclear layer, INL) 10 (七)內叢層 (Inner plexiform layer, IPL) 11 (八)神經節細胞層 (Ganglion cells layer, GCL) 11 (九)神經纖維層 (Nerve fiber layer, NFL) 12 (十)內界膜 (Internal limiting membrane, ILM) 12 二、視循環 (Visual cycle) 12 三、視網膜與氧化壓力 14 四、視網膜與內生性抗氧化防禦機制 15 (一)粒線體動態平衡 (Mitochondrial dynamics) 15 (二)Nrf2-Keap訊號途徑 (Nrf2-Keap1 signaling pathway) 16 五、視網膜與天然抗氧化物之相關研究 18 第三節 褐脂質 (Lipofuscin) 22 一、來源 22 二、N-retinyl-N-retinylidene enthanolamine (A2E) 22 第四節 藍光 26 一、藍光的特性 27 二、藍光與視網膜相關研究 27 第五節 老年性黃斑部病變 30 一、疾病介紹 30 二、高風險族群 30 三、診斷方法 31 四、臨床分期 32 第六節 文獻探討總結 33 第七節 研究目的 34 第八節 研究架構 35 第三章 材料與方法 36 第一節 實驗材料 36 一、藥品與試劑 36 二、儀器設備 39 三、實驗耗材 40 第二節 實驗方法 41 一、A2E合成 (Synthesis and identification of A2E) 41 二、細胞培養 (Cell culture) 43 三、胞內A2E累積分析 (Analysis of intracellular A2E) 44 四、細胞存活率測定 (Cell viability) 45 五、胞內活性氧測定 (Intracellular ROS assay) 50 六、粒線體活性氧測定 (Mitochondrial ROS assay) 52 七、細胞老化程度測定 (Cellular Senescence Assay) 53 八、統計分析 (Statistical analysis) 55 第四章 結果 56 第一節 化學合成光敏感物質A2E之分析與鑑定 56 第二節 藍光照射裝置及其光譜分析與溫度之影響 57 第三節 A2E於人類視網膜上皮細胞ARPE-19之胞內累積測定 57 第四節 A2E及藍光對人類視網膜上皮細胞ARPE-19存活率之影響 57 一、A2E合併藍光照射加劇人類視網膜上皮細胞ARPE-19之損傷 57 二、藍光濾光片減緩藍光對人類視網膜上皮細胞ARPE-19造成之損傷 58 第五節 抗氧化劑對人類視網膜上皮細胞ARPE-19之保護效果 59 第六節 A2E及藍光對人類視網膜上皮細胞ARPE-19活性氧生成量之影響 60 一、A2E合併藍光照射短時間內即可誘發胞內活性氧產生 60 二、維生素E可降低A2E及藍光照射所產生之胞內活性氧 61 三、A2E合併藍光照射誘發粒線體活性氧產生 61 四、維生素E可降低A2E及藍光照射所產生之粒線體活性氧 61 第七節 A2E及藍光對人類視網膜上皮細胞ARPE-19老化程度影響 62 一、A2E及藍光照射時間影響ARPE-19細胞之老化程度 62 二、A2E加速ARPE-19細胞老化具劑量反應性 62 三、維生素E可減緩A2E及藍光照射所造成之ARPE-19細胞老化 63 第五章 討論 64 第六章 結論 72 參考文獻 73

    Abdel-Aal, E.-S. M., Akhtar, H., Zaheer, K., & Ali, R. (2013). Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 5(4), 1169-1185. doi:10.3390/nu5041169
    Age-Related Eye Disease Study Research, G. (1999). The age-related eye disease study (AREDS): Design implications. AREDS report no. 1. Controlled Clinical Trials 20(6), 573–600.
    Age-Related Eye Disease Study Research, G. (2001). A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta-carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Archives of ophthalmology (Chicago, Ill.: 1960) 119(10), 1417¬–1436.
    Alaimo, A., Liñares, G. G., Bujjamer, J. M., Gorojod, R. M., Alcon, S. P., Martínez, J. H., . . . Kotler, M. L. (2019). Toxicity of blue led light and A2E is associated to mitochondrial dynamics impairment in ARPE-19 cells: Implications for age-related macular degeneration. Archives of Toxicology 93(5), 1401¬–1415. doi:10.1007/s00204-019-02409-6
    Alvarez, R. A., Liou, G. I., Fong, S. L., & Bridges, C. D. (1987). Levels of alpha- and gamma-tocopherol in human eyes: evaluation of the possible role of IRBP in intraocular alpha-tocopherol transport. The American Journal of Clinical Nutrition 46(3), 481–487. doi:10.1093/ajcn/46.3.481
    Alves-Rodrigues, A., & Shao, A. (2004). The science behind lutein. Toxicology Letters 150(1), 57–83. doi:https://doi.org/10.1016/j.toxlet.2003.10.031
    Anderson, O. A., Finkelstein, A., & Shima, D. T. (2013). A2E induces IL-1β production in retinal pigment epithelial cells via the NLRP3 inflammasome. PLOS ONE 8(6), e67263. doi:10.1371/journal.pone.0067263
    Aoki, A., Inoue, M., Nguyen, E., Obata, R., Kadonosono, K., Shinkai, S., . . . Yanagi, Y. (2016). Dietary n-3 fatty acid, α-tocopherol, zinc, vitamin D, vitamin C, and β-carotene are associated with age-related macular degeneration in Japan. Scientific Reports 6, 20723. doi:10.1038/srep20723
    Arnault, E., Barrau, C., Nanteau, C., Gondouin, P., Bigot, K., Viénot, F., . . . Picaud, S. (2013). Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions. PLOS ONE 8(8), e71398–e71398. doi:10.1371/journal.pone.0071398
    Arunkumar, R., Calvo, C. M., Conrady, C. D., & Bernstein, P. S. (2018). What do we know about the macular pigment in AMD: The past, the present, and the future. Eye 32(5), 992–1004. doi:10.1038/s41433-018-0044-0
    Baetz, N. W., Stamer, W. D., & Yool, A. J. (2012). Stimulation of aquaporin-mediated fluid transport by cyclic GMP in human retinal pigment epithelium in vitro. Investigative Ophthalmology & Visual Science 53(4), 2127–2132.
    Balaiya, S., Murthy, R. K., Brar, V. S., & Chalam, K. V. (2010). Evaluation of ultraviolet light toxicity on cultured retinal pigment epithelial and retinal ganglion cells. Clinical Ophthalmology (Auckland, N.Z.) 4, 33–39.
    Beatty, S., Koh, H.-H., Phil, M., Henson, D., & Boulton, M. (2000). The role of oxidative stress in the pathogenesis of age-related macular degeneration. Survey of Ophthalmology 45(2), 115–134.
    Bergmann, M., Schütt, F., Holz, F. G., & Kopitz, J. (2001). Does A2E, a retinoid component of lipofuscin and inhibitor of lysosomal degradative functions, directly affect the activity of lysosomal hydrolases. Experimental Eye Research 72(2), 191–195. doi:https://doi.org/10.1006/exer.2000.0949
    Biswas, S. K., & Rahman, I. (2009). Environmental toxicity, redox signaling and lung inflammation: The role of glutathione. Molecular Aspects of Medicine 30(1), 60–76. doi:https://doi.org/10.1016/j.mam.2008.07.001
    Bone, R. A., Landrum, J. T., Guerra, L. H., & Ruiz, C. A. (2003). Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans. The Journal of Nutrition 133(4), 992–998. doi:10.1093/jn/133.4.992
    Borel, P., Moussa, M., Reboul, E., Lyan, B., Defoort, C., Vincent-Baudry, S. p., . . . Lairon, D. (2007). Human plasma levels of vitamin E and carotenoids are associated with genetic polymorphisms in genes involved in lipid metabolism. The Journal of Nutrition 137(12), 2653–2659. doi:10.1093/jn/137.12.2653
    Bowes Rickman, C., Farsiu, S., Toth, C. A., & Klingeborn, M. (2013). Dry age-related macular degeneration: mechanisms, the rapeutic targets, and imaging. Investigative Ophthalmology & Visual Science 54(14), 68–80. doi:10.1167/iovs.13-12757
    Boyer, N. P., Higbee, D., Currin, M. B., Blakeley, L. R., Chen, C., Ablonczy, Z., . . . Koutalos, Y. (2012). Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: Their origin is 11-cis-retinal. The Journal of biological chemistry 287(26), 22276–22286. doi:10.1074/jbc.M111.329235
    Brandstetter, C., Mohr, L. K. M., Latz, E., Holz, F. G., & Krohne, T. U. (2015). Light induces NLRP3 inflammasome activation in retinal pigment epithelial cells via lipofuscin-mediated photooxidative damage. Journal of molecular medicine (Berlin, Germany) 93(8), 905–916. doi:10.1007/s00109-015-1275-1
    Buendia, I., Michalska, P., Navarro, E., Gameiro, I., Egea, J., & León, R. (2016). Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacology & Therapeutics 157, 84–104.
    Cano, M., Thimmalappula, R., Fujihara, M., Nagai, N., Sporn, M., Wang, A. L., . . . Handa, J. T. (2010). Cigarette smoking, oxidative stress, the anti-oxidant response through Nrf2 signaling, and age-related macular degeneration. Vision Research 50(7), 652–664. doi:https://doi.org/10.1016/j.visres.2009.08.018
    Canter, P. H., & Ernst, E. (2004). Anthocyanosides of Vaccinium myrtillus (Bilberry) for night vision—A systematic review of placebo-controlled trials. Survey of Ophthalmology 49(1), 38–50.
    Carpentier, S., Knaus, M., & Suh, M. (2009). Associations between lutein, zeaxanthin, and age-related macular degeneration: An Overview. Critical Reviews in Food Science and Nutrition 49(4), 313–326. doi:10.1080/10408390802066979
    Chang, C.-H., Chiu, H.-F., Han, Y.-C., Chen, I. H., Shen, Y.-C., Venkatakrishnan, K., & Wang, C. K. (2017). Photoprotective effects of cranberry juice and its various fractions against blue light-induced impairment in human retinal pigment epithelial cells. Pharmaceutical Biology 55(1), 571–580.
    Chen, X., Hall, H., Simpson, J. P., Leon-Salas, W. D., Ready, D. F., & Weake, V. M. (2017). Cytochrome b5 protects photoreceptors from light stress-induced lipid peroxidation and retinal degeneration. NPJ Aging and Mechanisms of Disease 3, 18–18. doi:10.1038/s41514-017-0019-6
    Cho, H. (2015). Complement regulation: physiology and disease relevance. Korean Journal of Pediatrics 58(7), 239–244. doi:10.3345/kjp.2015.58.7.239
    Chucair, A. J., Rotstein, N. P., SanGiovanni, J. P., During, A., Chew, E. Y., & Politi, L. E. (2007). lutein and zeaxanthin protect photoreceptors from apoptosis induced by oxidative stress: relation with Docosahexaenoic acid. Investigative Ophthalmology & Visual Science 48(11), 5168–5177. doi:10.1167/iovs.07-0037
    Contín, M. A., Arietti, M. M., Benedetto, M. M., Bussi, C., & Guido, M. E. (2013). Photoreceptor damage induced by low-intensity light: Model of retinal degeneration in mammals. Molecular Vision 19, 1614–1625.
    Crook, J. D., Manookin, M. B., Packer, O. S., & Dacey, D. M. (2011). Horizontal cell feedback without cone type-selective inhibition mediates ‘red-green’ color opponency in midget ganglion cells of the primate retina. The Journal of Neuroscience 31(5), 1762–1772. doi:10.1523/JNEUROSCI.4385-10.2011
    Datta, S., Cano, M., Ebrahimi, K., Wang, L., & Handa, J. T. (2017). The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Progress in Retinal and Eye Research 60, 201–218.
    de Koning-Backus, A. P. M., Buitendijk, G. H. S., Kiefte-de Jong, J. C., Colijn, J. M., Hofman, A., Vingerling, J. R., . . . Klaver, C. C. W. (2019). Intake of vegetables, fruit, and fish is beneficial for age-related macular degeneration. American Journal of Ophthalmology 198, 70–79.
    Decanini, A., Nordgaard, C. L., Feng, X., Ferrington, D. A., & Olsen, T. W. (2007). Changes in select redox proteins of the retinal pigment epithelium in age-related macular degeneration. American Journal of Ophthalmology 143(4), 607–615.e602. doi:https://doi.org/10.1016/j.ajo.2006.12.006
    Delori, F. o. C., Goger, D. G., & Dorey, C. K. (2001). Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Investigative Ophthalmology & Visual Science 42(8), 1855–1866.
    Dhubhghaill, S. S. N., Cahill, M. T., Campbell, M., Cassidy, L., Humphries, M. M., & Humphries, P. (2010). The pathophysiology of cigarette smoking and age-related macular degeneration. In R. E. Anderson, J. G. Hollyfield, & M. M. LaVail (Eds.), Retinal Degenerative Diseases Laboratory and Therapeutic Investigations, vol. 664, pp. 437–446. New York: Springer.
    Dorey, C. K., Delori, F. C., & Akeo, K. (1990). Growth of cultured RPE and endothelial cells is inhibited by blue light but not green or red light. Current Eye Research 9(6), 549–559. doi:10.3109/02713689008999595
    Essilor of America. (2013). Blue light hazard: New knowledge, new approaches to maintaining ocular health.
    Esteras, N., Dinkova-Kostova Albena, T., & Abramov Andrey, Y. (2016). Nrf2 activation in the treatment of neurodegenerative diseases: a focus on its role in mitochondrial bioenergetics and function. In Biological Chemistry Vol. 397, pp. 383.
    Feher, J., Kovacs, I., Artico, M., Cavallotti, C., Papale, A., & Balacco Gabrieli, C. (2006). Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiology of Aging 27(7), 983–993.
    Fletcher, A. E., Bentham, G. C., Agnew, M., & et al. (2008). Sunlight exposure, antioxidants, and age-related macular degeneration. Archives of Ophthalmology 126(10), 1396–1403. doi:10.1001/archopht.126.10.1396
    Frank, M., Duvezin-Caubet, S., Koob, S., Occhipinti, A., Jagasia, R., Petcherski, A., . . . Reichert, A. S. (2012). Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1823(12), 2297–2310.
    Fronk, A. H., & Vargis, E. (2016). Methods for culturing retinal pigment epithelial cells: a review of current protocols and future recommendations. Journal of Tissue Engineering 7, 1–23. doi:10.1177/2041731416650838
    Gao, X., & Talalay, P. (2004). Induction of phase 2 genes by sulforaphane protects retinal pigment epithelial cells against photooxidative damage. Proceedings of the National Academy of Sciences of the United States of America 101(28), 10446–10451. doi:10.1073/pnas.0403886101
    García-Layana, A., Cabrera-López, F., García-Arumí, J., Arias-Barquet, L., & Ruiz-Moreno, J. M. (2017). Early and intermediate age-related macular degeneration: update and clinical review. Clinical Interventions in Aging 12, 1579–1587. doi:10.2147/CIA.S142685
    Gaucher, D., Arnault, E., Husson, Z., Froger, N., Dubus, E., Gondouin, P., . . . Picaud, S. (2012). Taurine deficiency damages retinal neurones: cone photoreceptors and retinal ganglion cells. Amino Acids 43(5), 1979–1993. doi:10.1007/s00726-012-1273-3
    Gelman, R., Stevenson, W., Prospero Ponce, C., Agarwal, D., & Christoforidis, J. B. (2015). Retinal Damage Induced by Internal Limiting Membrane Removal. Journal of ophthalmology 2015, 939748. doi:10.1155/2015/939748
    Goebel, R., Muckli, L., & Kim, D.-S. (2012). Chapter 37-Visual System. In J. K. Mai & G. Paxinos (Eds.), The Human Nervous System (Third Edition) pp. 1301–1327). San Diego: Academic Press.
    Gregg, R. G., McCall, M. A., & Massey, S. C. (2013). Chapter 15-Function and Anatomy of the Mammalian Retina. In S. J. Ryan, S. R. Sadda, D. R. Hinton, A. P. Schachat, S. R. Sadda, C. P. Wilkinson, P. Wiedemann, & A. P. Schachat (Eds.), Retina (Fifth Edition) pp. 360–400. London: W.B. Saunders.
    Gruber, M., Chappell, R., Millen, A., LaRowe, T., Moeller, S. M., Iannaccone, A., . . . Mares, J. (2004). Correlates of serum lutein + zeaxanthin: Findings from the Third National Health and Nutrition Examination Survey. The Journal of Nutrition 134(9), 2387–2394. doi:10.1093/jn/134.9.2387
    Hafezi, F., Marti, A., Munz, K., & RemÉ, C. E. (1997). Light-induced apoptosis: Differential timing in the retina and pigment epithelium. Experimental Eye Research 64(6), 963–970. doi:https://doi.org/10.1006/exer.1997.0288
    Hageman, G. S., Anderson, D. H., Johnson, L. V., Hancox, L. S., Taiber, A. J., Hardisty, L. I., . . . Allikmets, R. (2005). A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America 102(20), 7227–7232. doi:10.1073/pnas.0501536102
    Hammond, B. R., Wooten, B. R., & Snodderly, D. M. (1996). Cigarette smoking and retinal carotenoids: implications for age-related macular degeneration. Vision Research 36(18), 3003–3009.
    Handelman, G. J., Machlin, L. J., Fitch, K., Weiter, J. J., & Dratz, E. A. (1985). Oral α-tocopherol supplements decrease plasma γ-tocopherol levels in humans. The Journal of Nutrition 115(6), 807–813. doi:10.1093/jn/115.6.807
    Hartnett, M. E., Lappas, A., Darland, D., McColm, J., Lovejoy, S., & D'Amore, P. (2003). Retinal pigment epithelium and endothelial cell interaction causes retinal pigment epithelial barrier dysfunction via a soluble VEGF-dependent mechanism. Experimental Eye Research 77(5), 593–599.
    Himori, N., Yamamoto, K., Maruyama, K., Ryu, M., Taguchi, K., Yamamoto, M., & Nakazawa, T. (2013). Critical role of Nrf2 in oxidative stress-induced retinal ganglion cell death. Journal of Neurochemistry 127(5), 669–680.
    Hytti, M., Piippo, N., Salminen, A., Honkakoski, P., Kaarniranta, K., & Kauppinen, A. (2015). Quercetin alleviates 4-hydroxynonenal-induced cytotoxicity and inflammation in ARPE-19 cells. Experimental Eye Research 132, 208–215. doi:https://doi.org/10.1016/j.exer.2015.02.001
    Jaadane, I., Boulenguez, P., Chahory, S., Carré, S., Savoldelli, M., Jonet, L., . . . Torriglia, A. (2015). Retinal damage induced by commercial light emitting diodes (LEDs). Free Radical Biology and Medicine 84, 373–384.
    Jaadane, I., Villalpando Rodriguez, G. E., Boulenguez, P., Chahory, S., Carré, S., Savoldelli, M., . . . Torriglia, A. (2017). Effects of white light-emitting diode (LED) exposure on retinal pigment epithelium in vivo. Journal of Cellular and Molecular Medicine 21(12), 3453–3466. doi:10.1111/jcmm.13255
    Jager, R. D., Mieler, W. F., & Miller, J. W. (2008). Age-related macular degeneration. New England Journal of Medicine 358(24), 2606–2617.
    Jang, Y. J., Won, J. H., Back, M. J., Fu, Z., Jang, J. M., Ha, H. C., . . . Kim, D. K. (2015). Paraquat induces apoptosis through a mitochondria-dependent pathway in RAW264.7 cells. Biomolecules & Therapeutics 23(5), 407–413.
    Jee, E. H., Kim, S. R., & Jang, Y. P. (2012). Rapid purification method for vitamin A-derived aging pigments A2E and iso-A2E using cation exchange resin. Journal of Chromatography A 1251, 232–235.
    Jin, H. L., Lee, S. C., Kwon, Y. S., Choung, S.-Y., & Jeong, K. W. (2016). A novel fluorescence-based assay for measuring A2E removal from human retinal pigment epithelial cells to screen for age-related macular degeneration inhibitors. Journal of Pharmaceutical and Biomedical Analysis 117, 560–567. doi:https://doi.org/10.1016/j.jpba.2015.10.010
    Johnson, J., Maher, P., & Hanneken, A. (2009). The flavonoid, eriodictyol, induces long-term protection in ARPE-19 cells through its effects on Nrf2 activation and phase 2 gene expression. Investigative Ophthalmology & Visual Science 50(5), 2398–2406. doi:10.1167/iovs.08-2088
    Junghans, A., Sies, H., & Stahl, W. (2001). Macular pigments lutein and zeaxanthin as blue light filters studied in liposomes. Archives of Biochemistry and Biophysics 391(2), 160–164. doi:https://doi.org/10.1006/abbi.2001.2411
    Kalt, W., Blumberg, J. B., McDonald, J. E., Vinqvist-Tymchuk, M. R., Fillmore, S. A. E., Graf, B. A., . . . Milbury, P. E. (2008). Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. Journal of Agricultural and Food Chemistry 56(3), 705–712. doi:10.1021/jf071998l
    Kanda, A., Chen, W., Othman, M., Branham, K. E. H., Brooks, M., Khanna, R., . . . Swaroop, A. (2007). A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proceedings of the National Academy of Sciences 104(41), 16227. doi:10.1073/pnas.0703933104
    Kang, J.-H., & Choung, S.-Y. (2016). Protective effects of resveratrol and its analogs on age-related macular degeneration in vitro. Archives of Pharmacal Research 39(12), 1703–1715. doi:10.1007/s12272-016-0839-0
    Karthikesan, K., Pari, L., & Menon, V. P. (2010). Protective effect of tetrahydrocurcumin and chlorogenic acid against streptozotocin–nicotinamide generated oxidative stress induced diabetes. Journal of Functional Foods 2(2), 134–142. doi:https://doi.org/10.1016/j.jff.2010.04.001
    Karunadharma, P. P., Nordgaard, C. L., Olsen, T. W., & Ferrington, D. A. (2010). Mitochondrial DNA Damage as a Potential Mechanism for age-related macular degeneration. Investigative Ophthalmology & Visual Science 51(11), 5470–5479. doi:10.1167/iovs.10-5429
    Kawazoe, Y., Sugita, S., Keino, H., Yamada, Y., Imai, A., Horie, S., & Mochizuki, M. (2012). Retinoic acid from retinal pigment epithelium induces T regulatory cells. Experimental Eye Research 94(1), 32–40.
    Kennedy, B. G., Torabi, A. J., Kurzawa, R., Echtenkamp, S. F., & Mangini, N. J. (2010). Expression of transient receptor potential vanilloid channels TRPV5 and TRPV6 in retinal pigment epithelium. Molecular Vision 16, 665–675.
    Kennedy, C. J., Rakoczy, P. E., & Constable, I. J. (1995). Lipofuscin of the retinal pigment epithelium: A review. Eye 9(6), 763–771. doi:10.1038/eye.1995.192
    Kijlstra, A., Tian, Y., Kelly, E. R., & Berendschot, T. T. J. M. (2012). Lutein: More than just a filter for blue light. Progress in Retinal and Eye Research 31(4), 303–315. doi:https://doi.org/10.1016/j.preteyeres.2012.03.002
    Kim, J., Jin, H. L., Jang, D. S., Jeong, K. W., & Choung, S.-Y. (2018). Quercetin-3-O-α-l-arabinopyranoside protects against retinal cell death via blue light-induced damage in human RPE cells and Balb-c mice. Food & Function 9(4), 2171–2183. doi:10.1039/C7FO01958K
    Kinnunen, K., Petrovski, G., Moe, M. C., Berta, A., & Kaarniranta, K. (2012). Molecular mechanisms of retinal pigment epithelium damage and development of age-related macular degeneration. Acta Ophthalmologica 90(4), 299–309. doi:10.1111/j.1755-3768.2011.02179.x
    Kinugasa, H., Whelan, K. A., Tanaka, K., Natsuizaka, M., Long, A., Guo, A., . . . Nakagawa, H. (2015). Mitochondrial SOD2 regulates epithelial-mesenchymal transition and cell populations defined by differential CD44 expression. Oncogene 34, 5229.
    Kiser, P. D., Golczak, M., & Palczewski, K. (2014). Chemistry of the retinoid (visual) cycle. Chemical Reviews 114(1), 194–232. doi:10.1021/cr400107q
    Kitagishi, Y., Nakano, N., Ogino, M., Ichimura, M., Minami, A., & Matsuda, S. (2017). PINK1 signaling in mitochondrial homeostasis and in aging (Review). International Journal of Molecular Medicine 39, 3–8.
    Klein, R., Deng, Y., Klein, B. E. K., Hyman, L., Seddon, J., Frank, R. N., . . . Haan, M. (2007). Cardiovascular disease, its risk factors and treatment, and age-related macular degeneration: Women's Health Initiative Sight Exam ancillary study. American Journal of Ophthalmology 143(3), 473–483.
    Koinzer, S., Reinecke, K., Herdegen, T., Roider, J., & Klettner, A. (2015). Oxidative stress induces biphasic ERK1/2 activation in the RPE with distinct effects on cell survival at early and late activation. Current Eye Research 40(8), 853–857. doi:10.3109/02713683.2014.961613
    Koushan, K., Rusovici, R., Li, W., Ferguson, L. R., & Chalam, K. V. (2013). The role of lutein in eye-related disease. Nutrients 5(5), 1823–1839.
    Kozaki J, Takeuchi M, Takahashi K, Yamagishi K, Ohkuma H, Uyama M. (1994). Light-induced retinal damage in pigmented rabbit--2. Effect of alpha-tocopherol. Nippon Ganka Gakkai Zasshi 98(10), 948–54.
    Krigel, A., Berdugo, M., Picard, E., Levy-Boukris, R., Jaadane, I., Jonet, L., . . . Behar-Cohen, F. (2016). Light-induced retinal damage using different light sources, protocols and rat strains reveals LED phototoxicity. Neuroscience 339, 296–307. doi:https://doi.org/10.1016/j.neuroscience.2016.10.015
    Kuse, Y., Ogawa, K., Tsuruma, K., Shimazawa, M., & Hara, H. (2014). Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light. Scientific Reports 4, 5223. doi:10.1038/srep05223
    Lamb, L. E., & Simon, J. D. (2004). A2E: A component of ocular lipofuscin. Photochemistry & Photobiology 79(2), 127–136. doi:10.1111/j.1751-1097.2004.tb00002.x
    Lazarou, M., Sliter, D. A., Kane, L. A., Sarraf, S. A., Wang, C., Burman, J. L., . . . Youle, R. J. (2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314. doi:10.1038/nature14893
    Lee, A. G., Morgan, M. L., Palau, A. E. B., Mai, C. K., Chen, Y., Soeken, T., . . . Yari, N. (2015). Chapter 19 - Anatomy of the Optic Nerve and Visual Pathway. In R. S. Tubbs, E. Rizk, M. M. Shoja, M. Loukas, N. Barbaro, & R. J. Spinner (Eds.), Nerves and Nerve Injuries (pp. 277–303) San Diego: Academic Press.
    Lee, B. L., Kang, J. H., Kim, H. M., Jeong, S. H., Jang, D. S., Jang, Y. P., & Choung, S. Y. (2016). Polyphenol-enriched Vaccinium uliginosum L. fractions reduce retinal damage induced by blue light in A2E-laden ARPE19 cell cultures and mice. Nutrition Research 36(12), 1402–1414.
    Liu, R. T., Gao, J., Cao, S., Sandhu, N., Cui, J. Z., Chou, C. L., . . . Matsubara, J. A. (2013). Inflammatory mediators induced by amyloid-beta in the retina and RPE in Vivo: Implications for inflammasome activation in age-related macular degeneration Aβ-induced changes in rat retina. Investigative Ophthalmology & Visual Science 54(3), 2225–2237. doi:10.1167/iovs.12-10849
    Liu, Y., Song, X., Han, Y., Zhou, F., Zhang, D., Ji, B., . . . Jia, X. (2011). Identification of anthocyanin components of wild chinese blueberries and amelioration of light-induced retinal damage in pigmented rabbit using whole berries. Journal of Agricultural and Food Chemistry 59(1), 356–363. doi:10.1021/jf103852s
    Luo, C., Chen, M., & Xu, H. (2011). Complement gene expression and regulation in mouse retina and retinal pigment epithelium/choroid. Molecular Vision 17, 1588–1597.
    Marie, M., Bigot, K., Angebault, C., Barrau, C., Gondouin, P., Pagan, D., . . . Picaud, S. (2018). Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells. Cell Death & Disease 9(3), 287. doi:10.1038/s41419-018-0331-5
    Matsumoto, H., Nakamura, Y., Iida, H., Ito, K., & Ohguro, H. (2006). Comparative assessment of distribution of blackcurrant anthocyanins in rabbit and rat ocular tissues. Experimental Eye Research 83(2), 348–356.
    Matsumoto, H., Nakamura, Y., Tachibanaki, S., Kawamura, S., & Hirayama, M. (2003). Stimulatory effect of cyanidin 3-glycosides on the regeneration of rhodopsin. Journal of Agricultural and Food Chemistry 51(12), 3560–3563.
    Mitter, S. K., Song, C., Qi, X., Mao, H., Rao, H., Akin, D., . . . Boulton, M. (2014). Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy 10(11), 1989–2005.
    Moiseyev, G., Nikolaeva, O., Chen, Y., Farjo, K., Takahashi, Y., & Ma, J.-x. (2010). Inhibition of the visual cycle by A2E through direct interaction with RPE65 and implications in Stargardt disease. Proceedings of the National Academy of Sciences 107(41), 17551. doi:10.1073/pnas.1008769107
    Moon, J., Yun, J., Yoon, Y. D., Park, S.-I., Seo, Y.-J., Park, W.-S., . . . Kang, J. S. (2017). Blue light effect on retinal pigment epithelial cells by display devices. Integrative Biology 9(5), 436–443. doi:10.1039/C7IB00032D
    Nakamura, M., Kuse, Y., Tsuruma, K., Shimazawa, M., & Hara, H. (2017). The involvement of the oxidative stress in murine blue LED light-induced retinal damage model. Biological and Pharmaceutical Bulletin 40(8), 1219–1225. doi:10.1248/bpb.b16-01008
    National Institutes of Health, NIH. (2018). Retrieved from https://ghr.nlm.nih.gov/condition/cone-rod-dystrophy
    Nelson, K. C., Armstrong, J. S., Moriarty, S., Cai, J., Wu, M.-W. H., Sternberg, J. P., & Jones, D. P. (2002). Protection of retinal pigment epithelial cells from oxidative damage by oltipraz, a cancer chemopreventive agent. Investigative Ophthalmology & Visual Science 43(11), 3550–3554.
    Nguyen, T., Sherratt, P. J., & Pickett, C. B. (2003). Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annual Review of Pharmacology and Toxicology 43(1), 233–260.
    Nita, M., & Grzybowski, A. (2016). The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of theanterior and posterior eye segments in adults. Oxidative Medicine and Cellular Longevity 2016, 3164734. doi:10.1155/2016/3164734
    Núñez-Álvarez, C., Suárez-Barrio, C., Aguado, S.D., & Osborne, N.N. (2018). Blue light negatively affects the survival of ARPE19 cells through an action on their mitochondria and blunted by red light. Acta ophthalmologica 97 1, e103–e115 .
    Ogawa, K., Kuse, Y., Tsuruma, K., Kobayashi, S., Shimazawa, M., & Hara, H. (2014). Protective effects of bilberry and lingonberry extracts against blue light-emitting diode light-induced retinal photoreceptor cell damage in vitro. BMC Complementary and Alternative Medicine 14(1), 120. doi:10.1186/1472-6882-14-120
    Omri, S., Omri, B., Savoldelli, M., Jonet, L., Thillaye-Goldenberg, B., Thuret, G., . . . Behar-Cohen, F. (2010). The outer limiting membrane (OLM) revisited: Clinical implications. Clinical Ophthalmology (Auckland, N.Z.) 4, 183–195.
    Organisciak, D. T., & Vaughan, D. K. (2010). Retinal light damage: Mechanisms and protection. Progress in Retinal and Eye Research 29(2), 113–134. doi:https://doi.org/10.1016/j.preteyeres.2009.11.004
    Palozza, P., & Krinsky, N. I. (1992). Antioxidant effects of carotenoids in Vivo and in Vitro: An overview. Methods in Enzymology 213, pp. 403–420): Academic Press.
    Parish, C. A., Hashimoto, M., Nakanishi, K., Dillon, J., & Sparrow, J. (1998). Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proceedings of the National Academy of Sciences 95(25), 14609.
    Park, S.-i., Lee, E. H., Kim, S. R., & Jang, Y. P. (2017). Anti-apoptotic effects of Curcuma longa L. extract and its curcuminoids against blue light-induced cytotoxicity in A2E-laden human retinal pigment epithelial cells. Journal of Pharmacy and Pharmacology 69(3), 334–340. doi:10.1111/jphp.12691
    Perlee, L. T., Bansal, A. T., Gehrs, K., Heier, J. S., Csaky, K., Allikmets, R., . . . Hageman, G. S. (2013). Inclusion of genotype with fundus phenotype improves accuracy of predicting choroidal neovascularization and geographic atrophy. Ophthalmology 120(9), 1880–1892.
    Plafker, S. M., O'Mealey, G. B., & Szweda, L. I. (2012). Chapter Four - Mechanisms for countering oxidative stress and damage in retinal pigment epithelium. In K. W. Jeon (Ed.), International Review of Cell and Molecular Biology (Vol. 298, pp. 135–177): Academic Press.
    Rahman, I., Biswas, S. K., Jimenez, L. A., Torres, M., & Forman, H. J. (2004). Glutathione, stress responses, and redox signaling in lung inflammation. Antioxidants & Redox Signaling 7(1–2), 42–59. doi:10.1089/ars.2005.7.42
    Rangasamy, T., Cho, C. Y., Thimmulappa, R. K., Zhen, L., Srisuma, S. S., Kensler, T. W., . . . Biswal, S. (2004). Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. The Journal of Clinical Investigation 114(9), 1248–1259. doi:10.1172/JCI21146
    Reichenbach, A., & Bringmann, A. (2013). New functions of Müller cells. Glia 61(5), 651–678. doi:doi:10.1002/glia.22477
    Remington, L. A. (2012). Chapter 4-Retina. In L. A. Remington (Ed.), Clinical Anatomy and Physiology of the Visual System (Third Edition) pp. 61–92. Saint Louis: Butterworth-Heinemann.
    Richer, S., Stiles, W., Statkute, L., Pulido, J., Frankowski, J., Rudy, D., . . . Nyland, J. (2004). Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: The Veterans LAST study (lutein antioxidant supplementation trial). Optometry-Journal of the American Optometric Association 75(4), 216–229. doi:https://doi.org/10.1016/S1529-1839(04)70049-4
    Roberts, R. L., Green, J., & Lewis, B. (2009). lutein and zeaxanthin in eye and skin health. Clinics in Dermatology 27(2), 195–201.
    Robison, W. G., Jr., Kuwabara, T., & Bieri, J. G. (1980). Deficiencies of vitamins E and A in the rat. Retinal damage and lipofuscin accumulation. Investigative Ophthalmology & Visual Science 19(9), 1030–1037.
    Roehlecke, C., Schaller, A., Knels, L., & Funk, R. H. W. (2009). The influence of sublethal blue light exposure on human RPE cells. Molecular Vision 15, 1929–1938.
    Royal National Institute of Blind People, RBIN. (2015). Retrieved from https://www.rnib.org.uk/
    Rüb, C., Wilkening, A., & Voos, W. (2017). Mitochondrial quality control by the Pink1/Parkin system. Cell and Tissue Research 367(1), 111–123.
    Rudnicka, A. R., Jarrar, Z., Wormald, R., Cook, D. G., Fletcher, A., & Owen, C. G. (2012). Age and gender variations in age-related macular degeneration prevalence in populations of European ancestry: A meta-analysis. Ophthalmology 119(3), 571–580. doi:10.1016/j.ophtha.2011.09.027
    Rutar, M., Natoli, R., Chia, R., Valter, K., & Provis, J. M. (2015). Chemokine-mediated inflammation in the degenerating retina is coordinated by Müller cells, activated microglia, and retinal pigment epithelium. Journal of Neuroinflammation 12(1), 8. doi:10.1186/s12974-014-0224-1
    Saint-Geniez, M., Kurihara, T., Sekiyama, E., Maldonado, A. E., & Amore, P. A. (2009). An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proceedings of the National Academy of Sciences 106(44), 18751. doi:10.1073/pnas.0905010106
    Saito, M., Nakatsugawa, K., Oh-Hashi, A., Nishimuta, M., & Kodama, N. (1992). Comparison of vitamin E levels in human plasma, red blood cells, and platelets following varying intakes of vitamin E. Journal of Clinical Biochemistry and Nutrition 12(1), 59–68. doi:10.3164/jcbn.12.59
    Schimel, A. M., Abraham, L., Cox, D., Sene, A., Kraus, C., Dace, D. S., . . . Apte, R. S. (2011). N-acetylcysteine amide (NACA) prevents retinal degeneration by up-regulating reduced glutathione production and reversing lipid peroxidation. The American journal of pathology 178(5), 2032–2043.
    Scholl, H. P. N., Issa, P. C., Walier, M., Janzer, S., Pollok-Kopp, B., Börncke, F., . . . Oppermann, M. (2008). Systemic Complement activation in age-related macular degeneration. PLOS ONE 3(7), e2593. doi:10.1371/journal.pone.0002593
    Scholl, H. P. N., Strauss, R. W., Singh, M. S., Dalkara, D., Roska, B., Picaud, S., & Sahel, J.-A. (2016). Emerging therapies for inherited retinal degeneration. Science Translational Medicine 8(368), 368RV6.
    Setlow, R. B., & Woodhead, A. D. (1994). Temporal changes in the incidence of malignant melanoma: Explanation from action spectra. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 307(1), 365–374. doi:https://doi.org/10.1016/0027-5107(94)90310-7
    Setlow, R. B., Grist, E., Thompson, K., & Woodhead, A. D. (1993). Wavelengths effective in induction of malignant melanoma. Proceedings of the National Academy of Sciences of the United States of America 90(14), 6666–6670.
    Shen, B., Jensen, R. G., & Bohnert, H. J. (1997). Mannitol Protects against Oxidation by Hydroxyl Radicals. Plant physiology 115(2), 527–532.
    Shi, L., Chen, J., Yang, J., Pan, T., Zhang, S., & Wang, Z. (2010). MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Research 1352, 255–264. doi:https://doi.org/10.1016/j.brainres.2010.07.009
    Shin, J. Y., Sohn, J., & Park, K. H. (2013). Chlorogenic acid decreases retinal vascular hyperpermeability in diabetic rat model. J Korean Med Sci 28(4), 608–613.
    Simó, R., Villarroel, M., Corraliza, L., Hernández, C., & Garcia-Ramírez, M. (2010). The retinal pigment epithelium: Something more than a constituent of the blood-retinal barrier-implications for the pathogenesis of diabetic retinopathy. Journal of Biomedicine and Biotechnology 2010, 190724. doi:10.1155/2010/190724
    Smith, C. J., & Hansch, C. (2000). The relative toxicity of compounds in mainstream cigarette smoke condensate. Food and Chemical Toxicology 38(7), 637–646. doi:https://doi.org/10.1016/S0278-6915(00)00051-X
    Sparrow, J. R., & Boulton, M. (2005). RPE lipofuscin and its role in retinal pathobiology. Experimental Eye Research 80(5), 595–606.
    Sparrow, J. R., Fishkin, N., Zhou, J., Cai, B., Jang, Y. P., Krane, S., . . . Nakanishi, K. (2003). A2E, a byproduct of the visual cycle. Vision Research 43(28), 2983–2990. doi:https://doi.org/10.1016/S0042-6989(03)00475-9
    Sparrow, J. R., Nakanishi, K., & Parish, C. A. (2000). The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Investigative Ophthalmology & Visual Science 41(7), 1981–1989.
    Sparrow, J. R., Parish, C. A., Hashimoto, M., & Nakanishi, K. (1999). A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Investigative Ophthalmology & Visual Science 40(12), 2988–2995.
    Sparrow, J. R., Vollmer-Snarr, H. R., Zhou, J., Jang, Y. P., Jockusch, S., Itagaki, Y., & Nakanishi, K. (2003). A2E-epoxides damage DNA in retinal pigment epithelial cells: Vitamin E and other antioxidants inhibit A2E-expoxide formation. Journal of Biological Chemistry 278(20), 18207–18213. doi:10.1074/jbc.M300457200
    Sparrow, J. R., Wu, Y., Kim, C. Y., & Zhou, J. (2010). Phospholipid meets all-trans-retinal: the making of RPE bisretinoids. Journal of Lipid Research 51(2), 247–261. doi:10.1194/jlr.R000687
    Strauss, O. (2005). The retinal pigment epithelium in visual function. Physiological Reviews 85(3), 845–881. doi:10.1152/physrev.00021.2004
    Sundelin, S. P., & Nilsson, S. E. G. (2001). Lipofuscin-formation in retinal pigment epithelial cells is reduced by antioxidants. Free Radical Biology and Medicine 31(2), 217–225. doi:https://doi.org/10.1016/S0891-5849(01)00573-1
    Suter, M., Remé, C., Grimm, C., Wenzel, A., Jäättela, M., Esser, P., . . . Richter, C. (2000). Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. Journal of Biological Chemistry 275(50), 39625–39630. doi:10.1074/jbc.M007049200
    Takayama, K., Kaneko, H., Kataoka, K., Kimoto, R., Hwang, S.-J., Ye, F., . . . Terasaki, H. (2016). Nuclear Factor (Erythroid-Derived)-Related Factor 2-associated retinal pigment epithelial cell protection under blue light-induced oxidative stress. Oxidative Medicine and Cellular Longevity 2016, 8694641.
    Tanito, M., Masutani, H., Kim, Y.-C., Nishikawa, M., Ohira, A., & Yodoi, J. (2005). Sulforaphane induces thioredoxin through the antioxidant-responsive element and attenuates retinal light damage in mice. Investigative Ophthalmology & Visual Science 46(3), 979–987. doi:10.1167/iovs.04-1120
    Thao, M. T., Renfus, D. J., Dillon, J., & Gaillard, E. R. (2014). A2E-mediated photochemical modification to fibronectin and its implications to age-related changes in Bruch's membrane. Photochemistry & Photobiology 90(2), 329–334. doi:doi:10.1111/php.12200
    The Age-Related Eye Disease Study 2 Research, G. (2013). Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: The age-related eye disease study 2 (AREDS2) randomized clinical trial. JAMA 309(19), 2005–2015. doi:10.1001/jama.2013.4997
    Thimmulappa, R. K., Mai, K. H., Srisuma, S., Kensler, T. W., Yamamoto, M., & Biswal, S. (2002). Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Research 62(18), 5196.
    Thomson, L. R., Toyoda, Y., Delori, F. C., Garnett, K. M., Wong, Z. Y., Nichols, C. R., . . . Kathleen Dorey, C. (2002). Long term dietary supplementation with zeaxanthin reduces photoreceptor death in light-damaged Japanese quail. Experimental Eye Research 75(5), 52–542.
    Traber, M. G., & Atkinson, J. (2007). Vitamin E, antioxidant and nothing more. Free radical biology & medicine, 43(1), 4–15.
    Twig, G., Elorza, A., Molina, A. J. A., Mohamed, H., Wikstrom, J. D., Walzer, G., . . . Shirihai, O. S. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. The EMBO Journal 27(2), 433. doi:10.1038/sj.emboj.7601963
    Ueda, K., Zhao, J., Kim, H. J., & Sparrow, J. R. (2016). Photodegradation of retinal bisretinoids in mouse models and implications for macular degeneration. Proceedings of the National Academy of Sciences 113(25), 6904.
    Ueda, T., Nakanishi-Ueda, T., Yasuhara, H., Koide, R., & Dawson, W. W. (2009). Eye damage control by reduced blue illumination. Experimental Eye Research 89(6), 863–868. doi:https://doi.org/10.1016/j.exer.2009.07.018
    van der Burght, B. W., Hansen, M., Olsen, J., Zhou, J., Wu, Y., Nissen, M. H., & Sparrow, J. R. (2013). Early changes in gene expression induced by blue light irradiation of A2E-laden retinal pigment epithelial cells. Acta Ophthalmologica 91(7), e537–e545. doi:doi:10.1111/aos.12146
    Viiri, J., Amadio, M., Marchesi, N., Hyttinen, J. M. T., Kivinen, N., Sironen, R., . . . Kaarniranta, K. (2013). Autophagy activation clears ELAVL1/HuR-mediated accumulation of SQSTM1/p62 during proteasomal inhibition in human retinal pigment epithelial cells. PLOS ONE 8(7), e69563.
    Voloboueva, L. A., Liu, J., Suh, J. H., Ames, B. N., & Miller, S. S. (2005). (R)-alpha-lipoic acid protects retinal pigment epithelial cells from oxidative damage. Investigative Ophthalmology & Visual Science 46(11), 4302–4310.
    Walsh, A. C., Michaud, S. G., Malossi, J. A., & Lawrence, D. A. (1995). Glutathione depletion in human T lymphocytes: Analysis of activation-associated gene expression and the stress response. Toxicology and Applied Pharmacology 133(2), 249–261. doi:https://doi.org/10.1006/taap.1995.1149
    Wang, A. L., Lukas, T. J., Yuan, M., Du, N., Tso, M. O., & Neufeld, A. H. (2009). Autophagy, exosomes and drusen formation in age-related macular degeneration. Autophagy 5(4), 563–564. doi:10.4161/auto.5.4.8163
    Wang, J., Feng, Y., Han, P., Wang, F., Luo, X., Liang, J., . . . Sun, X. (2018). Photosensitization of A2E triggers telomere dysfunction and accelerates retinal pigment epithelium senescence. Cell Death & Disease 9(2), 178. doi:10.1038/s41419-017-0200-7
    Wang, Y., Zhang, D., Liu, Y., Wang, D., Liu, J., & Ji, B. (2015). The protective effects of berry-derived anthocyanins against visible light-induced damage in human retinal pigment epithelial cells. Journal of the Science of Food and Agriculture 95(5), 936–944. doi:10.1002/jsfa.6765
    Wang, Y., Zhao, L., Wang, C., Hu, J., Guo, X., Zhang, D., . . . Ji, B. (2017). Protective effect of quercetin and chlorogenic acid, two polyphenols widely present in edible plant varieties, on visible light-induced retinal degeneration in vivo. Journal of Functional Foods 33, 103–111. doi:https://doi.org/10.1016/j.jff.2017.02.034
    Wei, Y., Gong, J., Yoshida, T., Eberhart, C. G., Xu, Z., Kombairaju, P., . . . Duh, E. J. (2011). Nrf2 has a protective role against neuronal and capillary degeneration in retinal ischemia–reperfusion injury. Free Radical Biology and Medicine 51(1), 216–224. doi:https://doi.org/10.1016/j.freeradbiomed.2011.04.026
    Weigert, G., Kaya, S., Pemp, B., Sacu, S., Lasta, M., Werkmeister, R. M., . . . Schmetterer, L. (2011). Effects of lutein supplementation on macular pigment optical density and visual acuity in patients with age-related macular degeneration. Investigative Ophthalmology & Visual Science 52(11), 8174–8178.
    Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. Nature Reviews Molecular Cell Biology 11, 872. doi:10.1038/nrm3013
    Wielgus, A. R., Collier, R. J., Martin, E., Lih, F. B., Tomer, K. B., Chignell, C. F., & Roberts, J. E. (2010). Blue light induced A2E oxidation in rat eyes – experimental animal model of dry AMD. Photochemical & Photobiological Sciences 9(11), 1505–1512. doi:10.1039/C0PP00133C
    Wihlmark, U., Wrigstad, A., Roberg, K., Nilsson, S. E. G., & Brunk, U. T. (1997). Lipofuscin Accumulation in Cultured Retinal Pigment Epithelial Cells Causes Enhanced Sensitivity to Blue Light Irradiation. Free Radical Biology and Medicine 22(7), 1229–1234.
    Will, O., Mahler, H.-C., Arrigo, A.-P., & Epe, B. (1999). Influence of glutathione levels and heat-shock on the steady-state levels of oxidative DNA base modifications in mammalian cells. Carcinogenesis 20(2), 333–337. doi:10.1093/carcin/20.2.333
    Wilson, M., & Vaney, D. I. (2008). 1.15-Amacrine Cells. In R. H. Masland, T. D. Albright, T. D. Albright, R. H. Masland, P. Dallos, D. Oertel, S. Firestein, G. K. Beauchamp, M. Catherine Bushnell, A. I. Basbaum, J. H. Kaas, & E. P. Gardner (Eds.), The Senses: A Comprehensive Reference pp. 361–367. New York: Academic Press.
    Winkler, B. S., Boulton, M. E., Gottsch, J. D., & Sternberg, P. (1999). Oxidative damage and age-related macular degeneration. Molecular Vision 5, 32–32.
    Wong, W. L., Su, X., Li, X., Cheung, C. M. G., Klein, R., Cheng, C.-Y., & Wong, T. Y. (2014). Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. The Lancet Global Health 2(2), e106–e116. doi:https://doi.org/10.1016/S2214-109X(13)70145-1
    Woo, J. M., Shin, D.-Y., Lee, S. J., Joe, Y., Zheng, M., Yim, J. H., . . . Chung, H. T. (2012). Curcumin protects retinal pigment epithelial cells against oxidative stress via induction of heme oxygenase-1 expression and reduction of reactive oxygen. Molecular Vision 18, 901–908.
    Xie, Z., Wu, X., Gong, Y., Song, Y., Qiu, Q., & Li, C. (2007). Intraperitoneal injection of ginkgo biloba extract enhances antioxidation ability of retina and protects photoreceptors after light-induced retinal damage in rats. Current Eye Research 32(5), 471–479. doi:10.1080/02713680701257621
    Xiong, W., MacColl Garfinkel, A. E., Li, Y., Benowitz, L. I., & Cepko, C. L. (2015). NRF2 promotes neuronal survival in neurodegeneration and acute nerve damage. The Journal of Clinical Investigation 125(4), 1433–1445.
    Xu, Z., Cho, H., Hartsock, M. J., Mitchell, K. L., Gong, J., Wu, L., . . . Duh, E. J. (2015). Neuroprotective role of Nrf2 for retinal ganglion cells in ischemia-reperfusion. Journal of Neurochemistry 133(2), 233–241. doi:doi:10.1111/jnc.13064
    Yang, H., Xu, Z., Liu, W., Wei, Y., Deng, Y., & Xu, B. (2012). Effect of grape seed proanthocyanidin extracts on methylmercury-induced neurotoxicity in Rats. Biological Trace Element Research 147(1), 156–164. doi:10.1007/s12011-011-9272-x
    Yang, Z., Camp, N. J., Sun, H., Tong, Z., Gibbs, D., Cameron, D. J., . . . Zhang, K. (2006). A variant of the HTRA1gene increases susceptibility to age-related macular degeneration. Science 314(5801), 992–993.
    Yoon, S.-M., Lee, B.-L., Guo, Y.-R., & Choung, S.-Y. (2016). Preventive effect of Vaccinium uliginosum L. extract and its fractions on age-related macular degeneration and its action mechanisms. Archives of Pharmacal Research 39(1), 21–32. doi:10.1007/s12272-015-0683-7
    Zhao, J., Yao, K., Jin, Q., Jiang, K., Chen, J., Liu, Z., . . . Wu, Y. (2014). Preparative and biosynthetic insights into pdA2E and isopdA2E, retinal-derived fluorophores of retinal pigment epithelial lipofuscin. Investigative Ophthalmology & Visual Science 55(12), 8241–8250. doi:10.1167/iovs.14-15709
    Zhao, Z., Sun, T., Jiang, Y., Wu, L., Cai, X., Sun, X., & Sun, X. (2014). Photooxidative damage in retinal pigment epithelial cells via GRP78 and the protective role of grape skin polyphenols. Food and Chemical Toxicology 74, 216–224. doi:https://doi.org/10.1016/j.fct.2014.10.001
    Zhou, G., Dada, L. A., Wu, M., Kelly, A., Trejo, H., Zhou, Q., . . . Sznajder, J. I. (2009). Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1. American Journal of Physiology-Lung Cellular and Molecular Physiology 297(6), L1120–L1130. doi:10.1152/ajplung.00007.2009
    Zhou, J., Cai, B., Jang, Y. P., Pachydaki, S., Schmidt, A. M., & Sparrow, J. R. (2005). Mechanisms for the induction of HNE- MDA- and AGE-adducts, RAGE and VEGF in retinal pigment epithelial cells. Experimental Eye Research 80(4), 567–580. doi:https://doi.org/10.1016/j.exer.2004.11.009
    Zhou, J., Jang, Y. P., Kim, S. R., & Sparrow, J. R. (2006). Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proceedings of the National Academy of Sciences 103(44), 16182. doi:10.1073/pnas.0604255103

    下載圖示
    QR CODE