簡易檢索 / 詳目顯示

研究生: 傅從順
Tsung-Shun Fu
論文名稱: 三元熱電材料應用於微致冷晶片之研製
Fabrication of micro thermoelectric cooler with ternary thermoelectric material
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 114
中文關鍵詞: 熱電材料電化學沉積技術熱傳導係數微致冷晶片
英文關鍵詞: Thermoelectric material, electrochemical deposition technology, thermal conductivity, micro-cooler
論文種類: 學術論文
相關次數: 點閱:353下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以電化學沉積的方式電鍍n型與p型 Bi-Te-Se熱電材料,同時,藉由平行線量測法對電化學沉積的熱電材料,量測其熱傳導係數,並獲得相關的熱電特性。最後利用已知熱電特性的熱電材料,搭配微機電製程技術,進行微致冷晶片之研製。
    以平行線量測法成功量取熱電材料的熱傳導係數,量測結果n-typed Bi-Te-Se熱電材料,其熱傳導係數為0.185 W/mK,而p-typed Bi-Te-Se熱電材料,其熱傳導係數為0.633 W/mK。藉由熱電優值公式獲得n-typed Bi-Te-Se熱電材料,其熱電優值為17.34×10-4/K,且在常溫工作環境下的ZT值為0.52;而p-typed Bi-Te-Se熱電材料,其熱電優值為53.189×10-3/K,且在常溫工作環境下的ZT值為1.596。最後,將已知熱電特性的熱電材料,藉由電化學沉積搭配微機電製程技術,成功研製出24對的微致冷晶片,其熱電接腳尺寸為600 um的方形陣列,電鍍高度約為10 um,後續將量測其致冷性能,並比較在不同對數條件下的致冷能力。

    In this study, n-typed and p-typed Bi-Te-Se thermoelectric materials are electroplated by electrochemical deposition method. The thermal conductivity and related thermoelectric characteristics were measured by parallel line method. Finally, the n-type and p-type Bi-Te-Se materials with known properties were applied to fabricate micro-cooler by MEMS process.
    The thermal conductivity were measured by parallel line method. For n-typed Bi-Te-Se material, the thermal conductivity is 0.185 W/mK, and for p-typed Bi-Te-Se material, the thermal conductivity is 0.633 W/mK. The figure of merit of n-typed Bi-Te-Se material is 17.34×10-4 /K, and room-temperature ZT value is 0.52. The figure of merit of p-typed Bi-Te-Se material is 53.189×10-4 /K, and room-temperature ZT value is 1.596. Finally, micro-coolers with 24 pairs were fabricated by electrochemical deposition and MEMS techniques, in which the dimension of the thermoelectric legs is 600 m and thickness of the electroplated is 10 m. Furthermore, the comparison of the cooling capability under different conditions will be measured.

    中文摘要 I 英文摘要 II 總目錄 III 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 微機電系統簡介 3 1.3 熱電材料簡介 5 1.4 散熱元件簡介 10 1.5 研究動機與目的 17 第二章 理論探討與文獻回顧 18 2.1 熱電效應 18 2.1.1 席貝克效應 18 2.1.2 帕耳帖效應 19 2.1.3 湯姆森效應 20 2.2 熱電優值 23 2.3 熱傳導量測法 26 2.3.1 熱擴散法 27 2.3.2 熱傳導法 31 2.3.2 三倍頻法 33 2.4 熱電材料製造技術 42 2.4.1 傳統製造技術 42 2.4.1.1 CZ法 42 2.4.1.2布里茲曼法 42 2.4.1.3 熱壓成形法 43 2.4.1.4 熱擠壓成形法 43 2.4.2 微加工製造技術 47 2.4.2.1物理氣相沉積法 47 2.4.2.2化學氣相沉積法 47 2.4.2.3火花電漿燒結法 48 2.4.2.4 網版印刷法 49 2.4.2.5 電化學沉積法 50 第三章 實驗設計與規劃 64 3.1 實驗規劃 64 3.2 實驗流程 68 3.2.1 黃光微影製程 68 3.2.2 電鍍製程 68 3.3 製程與量測設備 69 3.4 熱電特性量測與設備 75 3.4.1導電率量測 75 3.4.2席貝克係數量測 76 3.4.3 熱傳導係數量測 77 3.5 量測熱傳導係數之試片研製 82 3.6 微致冷晶片之研製 84 第四章 實驗結果與討論 87 4.1電流密度對三元熱電材料特性之影響 87 4.2 熱傳導係數量測試片之製作 88 4.2.1 聚合物薄膜及三元熱電材料鍍層之試片製作 89 4.3 熱傳導係數量測 92 4.3.1 聚合物薄膜之熱傳導係數量測 92 4.3.2 p型 Bi-Te-Se薄膜之熱傳導係數量測 93 4.3.3 n型 Bi-Te-Se薄膜之熱傳導係數量測 94 4.4 熱電材料之特性 104 4.5 微致冷晶片之製作 106 第五章 結論與未來展望 108 5.1 結論 108 5.2 未來展望 109 參考文獻 110

    1. http://www.cnbeta.com/articles/86728.htm
    2. Microsoft, http://www.microsoft.com.
    3. 楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四
    章, pp. 142, 2003.http://www.marlow.com/
    4. 朱旭山, "熱電材料與元件之發展與應用", 工業材料雜誌, 第220期, 2005.
    5. http://www.marlow.com/
    6. http://www.sii.co.jp/
    7. C. Tsai, R. L. Chen, C. C. L. Chen, J. Denatale, “Micromachined stack component for miniaturethermoacoustic refrigerator”, IEEE, (2002), pp. 149-151.
    8. J. M. Koo, L. Jiang, L. Zhang, P. Zhou, S. S. Banerjee, T. W. Kenny, J. G. Santiago, K. E. Goodson, “Modeling of two-phase microchannel heat sinks for VISI chips”, IEEE, (2001), pp. 422-426.
    9. S. Wu, J. Mai, Y. C. Tai, C. M. Ho, “Micro heat exchanger using MEMS impinging jets”, IEEE, (1999), pp. 171-176
    10. C. H. Amon, J. Murthy, S. C. Yao, S. Narumanchi, C. F. Wu, C. C. Hsieh, “MEMS-enable thermal management of high-heat-flux devices EDIFICE: embedded droplet impingement for intergrated cooling of electronics.”, Experimental thermal and fluid science, (2001), pp. 231-242.
    11. D. J. Yao, “In-plane MEMS thermoelectric microcooler”, Ph. D. dissertation of UCLA, USA, (2001).
    12. Y. Avenas, M. Ivanova, N. Popova, C. Schaeffer, J. L. Schanen, “Thermal analysis of thermal spreaders used in power electronics cooling.”, IEEE, (2002), pp. 216-221.
    13. J. Kim, E. Golliher, “Steady state model of a micro loop heat pipe.”, IEEE, (2002), pp. 137-144.
    14. R. Schweickart, L. Ottenstein, B. Cullimore, C. Egan, D. Wolf, “Testing of controller for a hybrid capillary pumped loop thermal control system.”, IEEE, (1989), pp. 69-74.
    15. D. M. Rowe, "Thermoelectrics handbook micro to nano", 2006.
    16. D. J. Yao, "In-plane MEMS thermoelectric microcooler", Ph. D. dissertation of UCLA, USA, 2001.
    17. 簡恆傑, "微尺度薄膜熱傳導性能量測方法", 工業材料雜誌, 第247期, 2007.
    18. K. E. Goodson, and M. I. Flik, "Solid layer thermal conductivity measurement techniques", Appl. Mech. Rev., Vol. 47, pp. 101-112, 1994.
    19. D. G. Cahill, "Heat transport in dielectric thin films and at solid-solid interfaces", Nanoscale and Microscale Thermophysical Engineering, Vol. 1, pp. 85-108, 1997.
    20. A. J. Ångström, "Neue methode, das wärmeleitungsvermögen der körper zu bestimmen", Annalen der Physik, Vol. 114, pp. 513-530, 1861.
    21. T. Yao, "Thermal properties of AlAs/GaAs superlattices", Appl. Phys. Lett., Vol. 51, No. 30, pp. 1798-1800, 1987.
    22. G. Chen, C. L. Tien, X. Wu, and J. S. Smith, "Thermal diffusivity measurement of GaAs/AlGaAs thin-film structures", Journal of Heat Transfer, Vol. 116, pp. 325-331, 1994.
    23. E. Jansen, and E. Obermeier, "Thermal conductivity measurements on thin films based on micromechanical devices", J. Micromech. Microeng., Vol. 6, pp. 118-121, 1996.
    24. O. W. Käding, H. Shurk, and K. E. Goodson, "Thermal conduction in metallized silicon-dioxide layers on silicon", Appl, Phys. Lett., Vol. 65, pp. 1629-1631, 1994.
    25. D. G. Cahill, "Thermal conductivity measurements from 30K-750K: The 3 omega method", Rev. Sci. Instrum., Vol. 61, pp. 802-808, 1990.
    26. N. O. Birge, and S. R. Nagel, "Wide-Frequency specific heat spectrometer", Rev. Sci. Instrum., Vol. 58, pp. 1464-1470, 1987.
    27. http://www.en.oita-u.ac.jp/~miwaken/index.html
    28. L. D. Ivanova, Y. V. Granatkina, N. V. Polikarpova, and E. I. Smirnova, "Selenium-doped Sb2Te3-Bi2Te3 crystals", Inorganic Materials Vol. 33, pp. 558-561, 1997.
    29. L. D. Ivanova, Y. V. Granatkina, and N. V. Polikarpova, "Properties of single-crystal in the Sb2Te3-Bi2Te3 solid solution system", Inorganic Materials, Vol. 31, pp. 678-681, 1995.
    30. L. D. Ivanova, S. A. Brovikova, H. Sussmann, and P. Reinshaus, "Effect of growth-conditions on the homogeneity of Bi0.5Sb1.5Te3 single-crystals", Inorganic Materials, Vol. 31, pp. 682-686, 1995.
    31. A. Borshchevsky, "Handbook of thermoelectrics", 1995.
    32. O. Yamashita, S. Tomiyoshi, and K. Makita, "Bismuth telluride compounds with high thermoelectric figures of merit", Journal of Applied Physics, Vol. 93, Issue 1, January 1, pp. 368-374, 2003.
    33. D. B. Hyun, J. S. Hwang, B. C. You, T. S. Oh, and C. W. Hwang, "Thermoelectric properties of the n-type 85 % Bi2Te3-15 % Bi2Se3 alloys doped with Sbl3 and CuBr", Journal of Materials Science Vol. 33, pp. 5595-5600, 1998.
    34. http://www.britannica.com/eb/article-76696/advanced-ceramics
    35. D. B. Hyun, J. S. Hwang, J. D. Shim, and T. S. Oh, "Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method", Journal of Materials Science Vol. 36, Number 5, pp. 1285-1291, 2001.
    36. B. Wölfing, C. Kloc, J. Teubner, and E. Bucher, "High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity", Physical Review Letters Vol. 86, Issue 19, pp. 4350-4353, 2001.
    37. http://www.substech.com/dokuwiki/doku.php
    38. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit", Nature Vol. 413, pp. 597-602, 2001.
    39. J. Seo, K. Park, D. Lee, and C. Lee, "Microstructure and thermoelectric properties of p-type Bi0.5Sb0.5Te0.5 compounds fabricated by hot pressing and hot extrusion", Scripta Materialia, Vol. 38, Issue 3, pp. 477-484, 1998.
    40. D. H. Kim, E. Byon, G. H. Lee, and S. Cho, "Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering", Thin Solid Films Vol. 510, pp. 148-153, 2006.
    41. L. W. da Silva, M. Kaviany, and C. Uher, "Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems", Journal of Applied Physics, Vol. 97, pp. 114903.1-114903.10, 2005.
    42. L. M. Goncalves, J. G. Rocha, C. Couto, P. Alpuim, and J. H. Correia, " On-chip array of thermoelectric Peltier microcoolers", 14th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 2179-2182, 2007.
    43. http://www.answers.com/
    44. A. Boulouz, S. Chakraborty, A. Giani, F. P. Delannoy, and A. Boyer, "Transport properties of V-VI semiconducting thermoelectric BiSbTe alloy thin films and their application to micromodule Peltier devices", Journal of Applied Physics Vol. 89, No. 9, pp. 5009-5014, 2001.
    45. A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, E. Charles, and A. Boyer, "Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD", Materials Science and Engineering B, Vol. 64, pp. 19-24, 1999.
    46. A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, and A. Boyer, "MOCVD growth of Bi2Te3 layers using diethyltellurium as a precursor", Thin Solid Films Vol. 315, pp. 99-103, 1998.
    47. http://www.shi.co.jp/sps/eng/index.html
    48. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, "Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering", Scripta Materialia, Vol. 52, Issue 5, pp. 347-351, 2005.
    49. J. Weber, K. P. Kamloth, F. Haase, P. Detemple, F. Völklein, and T. Doll, "Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics", Sensors and Actuators A, Vol. 132, (2006) pp. 325330.
    50. P. Markowski, A. Dziedzic, "Planar and three-dimensional thick-film thermoelectric microgenerators", Microelectronics Reliability 48, (2008) pp. 890–896.
    51. G. J. Snyder, J. R. Lim, C. K. Huang, and J. P. Fleurial, "Thermoelectric microdevice fabricated by MEMS-like electrochemical process", Nature Materials, Vol. 2, pp. 528-532, 2003.
    52. J. R. Lim, G. J. Snyder, C. K. Huang, J. A. Herman, M. A. Ryan, and J. P. Fleurial, "Thermoelectric microdevice fabrication process and evaluation at the jet propulsion laboratory (JPL)", 21th International Conference of Thermoelectrics, pp. 535-539, 2002.
    53. J. P. Fleurial, A. Borshchevsky, M. A. Ryan, W. M. Philips, J. G. Snyder, T. Caillat, E. A. Kolawa, J. A. Herman, P. Mueller, and M. Nicolet, "Development of thick-Film thermoelectric microcoolers using electrochemical deposition", Materials Research Society Symposium Proceedings, Vol. 545, pp. 493-500, 1998.
    54. J. P. Fleurial, G. J. Snyder, J. A. Herman, P. H. Giauque, W. M. Phillips, M. A. Ryan, P. Shakkottai, E. A. Kolawa, and M. A. Nicolet, "Thick-film thermoelectric microdvices", 18th International Conference of Thermoelectrics, pp. 294-300, 1999.
    55. Q. Huang, A. J. Kellock, and S. Raoux, "Electrodeposition of SbTe phase-change alloys", J. Electrochem. Soc., Vol. 155, pp. D104-D109, 2008.
    56. T. Kanagawa, R. Hobara, I. Matsuda, T. Tanikawa, A. Natori, and S. Hasegawa, "Anisotropy in Conductance of a Quasi-One-Dimensional Metallic Surface State Measured by a Square Micro-Four-Point Probe Method", Physical Review Letters, Vol. 9, No. 3, pp. 036805, 2003.
    57. H. C. Chien, D. J. Yao, M. J. Huang, and T. Y. Chang, "Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film", Review Of Scientific Instruments, Vol. 79, pp. 054902, 2008.
    58. 陳彥翔, "電化學沉積三元熱電材料之技術開發", 台灣師範大學, 碩士論文, 2010.
    59. 廖莉菱, "熱電材料應用於散熱微致冷晶片之技術開發", 台灣師範大學, 碩士論文, 2009.

    下載圖示
    QR CODE