簡易檢索 / 詳目顯示

研究生: 王姵文
Wang, Pei-Wen
論文名稱: 車載網路中協調式多通道媒體存取控制通訊規約之設計
Designs of Coordinated Multichannel MAC Protocol for Vehicular Ad Hoc Networks
指導教授: 黃政吉
Huang, Jeng-Ji
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 64
中文關鍵詞: 車載網路同步區間多通道存取媒體存取控制通訊規約
英文關鍵詞: VANETs, synchronization intervals, multichannel access, MAC
DOI URL: http://doi.org/10.6345/THE.NTNU.DEE.003.2018.E08
論文種類: 學術論文
相關次數: 點閱:218下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 車載網路(Vehicular Ad Hoc Networks, VANETs)為有前景的無線通訊技術,能提供安全性應用與娛樂資訊。車載網路的主要標準之一,為汽車環境無線存取(Wireless Access in Vehicular Environments, WAVE)。在WAVE中定義同步區間(Synchronization Interval)與多通道(Multichannel)存取。多通道包含一個控制通道及六個服務通道。在先前的研究中如C-MAC,提到協調式多通道媒體存取控制通訊規約作法。C-MAC是透過路邊基地台居中協調,包含安全訊息的傳送、傳輸預約、車輛辨識等等。C-MAC的作法中可確保安全訊息的傳送是免碰撞,但在傳輸預約及車輛辨識方面,它的通道使用卻是欠缺效率。換言之,在C-MAC作法中,這兩個部分是透過競爭過程來完成,是導致通道頻寬被浪費的主要原因。我們提出兩種作法:作法一為有辨識過程、作法二為沒有辨識過程。兩種作法在傳輸預約上都採用免競爭的方式,以確保通道有效地被使用。模擬結果顯示,我們提出的作法在通道頻寬與吞吐量上都優於C-MAC的作法。

    Vehicular Ad Hoc Networks (VANETs) have widely considered as a promising wireless communication technology that can simultaneously provide vehicle safety and infotainment. In view of this, Wireless Access in Vehicular Environments (WAVE) has been standardized, in which synchronization intervals and multichannel access are defined. To be more specific, there are one control channel (CCH) and six service channels (SCHs). In previous works, e.g. C-MAC, a coordinated multichannel MAC control protocol has been designed, in which road side units (RSUs) play the role of a coordinator and arrange for the delivery of safety messages, transmission reservations, vehicle identifications, and so on. Though collision-free delivery of safety messages is guaranteed in C-MAC, it has the drawback that channel utilization is inefficient in transmission reservations and vehicle identifications. That is, they are done by means of a contention-based process, which can easily result in waste of channel bandwidth. In order to remedy this, we have proposed two designs in this thesis: one with an identification process of vehicles and another without. In both our designs, transmission reservations are all performed in a collision-free manner, ensuring that channel is efficiently utilized. Simulation results demonstrate that our proposed designs can outperform C-MAC in terms of channel bandwidth and throughput.

    中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 表目錄 v 圖目錄 vi 第一章 緒論 1 1.1 研究動機與背景 1 1.2 研究目的 7 1.3 論文架構 9 第二章 重要文獻探討 10 2.1 純車載網路的作法 10 2.2 結合行動電話的作法 11 2.3 路邊基地台的作法 16 第三章 研究方法 25 3.1 系統架構 25 3.2 有辨識過程 27 3.3 沒有辨識過程 30 3.4 傳送資料的區間長度 34 3.5 作法的切換機制 34 第四章 實驗結果 35 4.1 移動模型 36 4.2 C-MAC中服務通道區間長度與通道預約區間長度 38 4.3 安全訊息階段比較 41 4.4 服務通道區間比較 48 4.5 平均傳送資料區間的長度比較 49 4.6 吞吐量比較 52 第五章 結論 54 附錄一 55 參考文獻 60 自傳 63 學術研究 64

    [1] M. Wang, H. Liang, R. Zhang, R. Deng, and X. Shen, “Mobility-Aware Coordinated Charging for Electric Vehicles in VANET-Enhanced Smart Grid,” IEEE J. Sel. Areas Commun, vol. 32, no. 7, pp. 1344 - 1360, June. 2014.
    [2] F. I. Shaikh, and H. A. Hingoliwala, “Path Planning based QoS Routing in VANET,” 2017 International Conference on Big Data, IoT and Data Science (BID), pp. 37 - 44, June. 2017.
    [3] M. Wang, H. Shan, R. Lu, R. Zhang, X. Shen, and F. Bai, “Real-Time Path Planning Based on Hybrid-VANET-Enhanced Transportation System,” IEEE Trans. Veh. Technol, vol. 64, no.5, pp. 1664 - 1678, July. 2014.
    [4] N. Wisitpongphan, F. Bai, P. Mudalige, V. Sadekar, and Ozan Tonguz, “Routing in Sparse Vehicular Ad Hoc Wireless Networks,” IEEE J. Sel. Areas Commun, vol. 25, no. 8, pp. 1538 - 1556, October. 2007.
    [5] L. Zhu, C. Li, B. Li, X. Wang, and G. Mao, “Geographic Routing in Multilevel Scenarios of Vehicular Ad Hoc Networks,” IEEE Trans. Veh. Technol, vol. 65, no.9, pp. 7740 - 7753, September. 2016.
    [6] J.-J. Huang, “Accurate Probability Distribution of Rehealing Delay in Sparse VANETs,” IEEE Communications Letter, vol. 19, no. 7, pp. 1193-1196, July. 2015.
    [7] K. Liu, J.-Y. Ng, V. C. S. Lee, S. H. Son, and I. Stojmenovic, “Cooperative Data Scheduling in Hybrid Vehicular Ad Hoc Networks: VANET as a Software Defined Network,” IEEE/ACM Trans. Net, vol. 24, no. 3, pp. 1759 - 1773, June. 2016.
    [8] A. A. Almohammedi, N. K. Noordin, A. Sali, F. Hashim, and M. Balfaqih, “An Adaptive Multi-Channel Assignment and Coordination Scheme for IEEE 802.11P/1609.4 in Vehicular Ad-Hoc Networks,” IEEE Access, vol. 6, pp. 2781 - 2802, December. 2017.
    [9] Ns-3 Model Library. [Online]. Available at: https://goo.gl/S3uvoD.
    [10] H. Yoo, and D. Kim, “Dynamic Channel Coordination Schemes for IEEE 802.11p/1609 Vehicular Networks: A Survey,” International Journal of Distributed Sensor Networks, vol. 9, no. 10, pp. 1-8, October. 2013.
    [11] Y. Liu, L.F. Liu, L. Zheng, and H.F. Wang, “Study on the Downlink Performance of Roadside Unit in Vehicular Ad-Hoc Networks,” Journal of Software, vol. 26, no. 7, pp. 1700-1710, 2015.
    [12] A. Benslimane, T. Taleb, and R. Sivaraj, “Dynamic Clustering-Based Adaptive Mobile Gateway Management in Integrated VANET — 3G Heterogeneous Wireless Networks,” IEEE J. Sel. Areas Commun., vol. 29, no. 3, pp. 559 - 570, March 2011.
    [13] S. Ucar, S. C. Ergen, and O. Ozkasap, “Multihop-Cluster-Based IEEE 802.11p and LTE Hybrid Architecture for VANET Safety Message Dissemination,” IEEE Trans. Veh. Technol., vol. 65, no. 4, pp. 2621 - 2636, April. 2016.
    [14] Q. Wang, S. Leng, H. Fu, and Y. Zhang, “An IEEE 802.11p-Based Multichannel MAC Scheme With Channel Coordination for Vehicular Ad Hoc Networks,” IEEE Transactions on Intelligent Transportation Systems., vol.13, no. 2, pp. 449 - 458, June. 2012.
    [15] H. A. Omar, W. Zhuang, and L. Li, “VeMAC: A TDMA-Based MAC Protocol for Reliable Broadcast in VANETs,” IEEE Transactions on Mobile Computing., vol.12, no. 9, pp. 1724 - 1736, September. 2013.
    [16] W. Guo, L. Huang, L. Chen, H. Xu, and J. Xie, “An Adaptive Collision- Free MAC protocol based on TDMA for Inter-Vehicular communication,” Wireless Communications & Signal Processing (WCSP)., pp.1-6, October. 2012.
    [17] Z. Tang, J. Wang, S. Song, P. Yang, and Y. Zhang, “A Cluster-Based Multichannel MAC Protocol for throughput sensitive applications in VANETs,” Anti-counterfeiting, Security, and Identification (ASID)., pp.19-23, September. 2015.
    [18] Y. Kim, M. Lee, and T.-J. Lee, “Coordinated Multichannel MAC Protocol for Vehicular Ad Hoc Networks,” IEEE Trans. Veh. Technol., vol. 65, no. 8, pp. 6508 - 6517, August. 2016.
    [19] MAC Layer: IEEE802.11p. [Online]. Available at: https://goo.gl/HbE7C4.

    下載圖示
    QR CODE