研究生: |
辜政脩 Ku, Cheng-hsiu |
---|---|
論文名稱: |
壹:以雙乙醯丙酮基氧鈦錯合物催化酯基交換反應之研究, 貳:以N-亞柳胺基酸衍生之氧釩錯合物對稱催化二萘酚氧化偶合之研究 (I) A new transesterification protocol is developed by using TiO(acac)2 as the catalyst. (II) A series of chiral oxovanadium complexes serve |
指導教授: |
陳建添
Chen, Chien-Tien |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 氧鈦雙乙醯丙酮基 、防曬油 、酯基交換 、催化 、親核性醯基取代 、防腐劑製程 、甲基酯與胺類和硫醇類 、反應性專一 |
英文關鍵詞: | transesterification, TiO(acac)2, industrial applications, anti-oxidants, sun blocks, oxovanadium, BINOL, couplings of 2-naphthols |
論文種類: | 學術論文 |
相關次數: | 點閱:267 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
我們已開發出利用氧鈦雙乙醯丙酮基催化酯基交換。利用一莫耳百分率之催化量,以甲苯或二甲苯為溶劑,相同當量比之醇類與酯類反應下具有良好的反應性以及化學產率,不但可適用於醇類,更可應用於胺類,以及硫醇類等親核性試劑之交換反應,對於一級醇類不但反應快速,而且反應性專一產率高 ( 90-100 %),不會有其他副反應產生,在不同官能基取代之酯類或醇類均有良好之反應性與選擇性。至於二級醇類亦有相當高之應用價值產率 ( 85-90 %), 而對於甲基酯與胺類和硫醇類之親核性醯基取代反應,亦有合理的之產率,以及獨特性,若依照不同之酯類而作之酯基交換,更有不同之應用性,而其應用性包含工業界之高分子化合物製程,防腐劑製程,以及防曬油之製成,皆已達到相對可應用之產率。
N-亞柳胺基酸三牙配子衍生之氧釩錯合物在不對稱催化2-萘酚氧化偶合,以2-羥基-1-苯并柳醛和2-胺基異戊酸(或苯丙胺酸)所衍生而成的氧釩(IV)錯合物以及以甲醇在結晶後氧釩(V)錯合物之為催化劑,可以得到1,1’-雙萘酚,產率可達70~100%,和達68%的鏡像選擇性,產物經在結晶後可應用於合成具高鏡像純度之手性1,1’-雙萘酚。
Abstract
We have developed a new transesterification protocol. by using TiO(acac)2 as the catalyst. Alcohols, amines, and thiols can be employed as protic nucleophiles to effect nucleophic acyl substitution of methyl esters. For primary and secondary alcohols the resultant transesterification products can be obtained with good to excellent chemical yields ( 85-100 %) without any side reactions. The new catalytic system may be potentially useful in industrial applications, including preparation of polyesters and polyamides, cosmetic and engineering anti-oxidants, and sun blocks.
A series of chiral oxovanadium (IV) and oxovanadium (V) complexes obtained after recrystallization can be synthesizied from tridentate 3,5-substituted and 3,4-benzo- and 5,6-benzo- N-salicylidene -α-amino acids. They serve as efficient catalysts for the enantioselective oxidative couplings of 2-naphthols under O2 .The resultant BINOLs were obtained in good yields ( 70-100 % ) and with enantioselectivities of up to 68% In addition, they can be easily upgraded to optically pure BINOLs by recrystallization.
參考文獻
(1) Jenzo Otera, chem. Rev. 1993, 93, 1449-1470
(2) Rehberg, C. E.; Fisher, C. H. J. Am. Chem. Soc. 1944, 66, 1203-1207
(3) Rehberg, C. E.; Faucette, W. A.; Fisher, C. H. J. Am. Chem. Soc. 1944, 66, 1723-1724.
(4) Rehberg, C. E. Organic Synthesis; Wiley: New York, 1955,: Collect. Vol. 3, pp 146-148.
(5) Hagenmeyer, H. J., Jr.; Hull, D. C. Ind. Eng. Chem. 1949, 41, 2920-2924.
(6) Rothman, E. S.; Hecht, S. S.: Pfeffer, P. E.; Silbert, L. S. J. Org. Chem. 1972, 37, 3551-3552.
(7) DeWolfe, R. H. Synthesis 1974, 153-172.
(8) Reimer, M.; Downes, H. R. J. Am. Chem. Soc. 1921, 43, 945-951.
(9) Taft, R. W., Jr.; Newman, M. S.; Verhoek, F. H. J. Am. Chem. Soc. 1950, 72, 4511-4519.
(10) Billman, J. H.; Smith, W. T., Jr.; Rendall, J. L. J. Am. Chem. Soc. 1947, 69, 2058-2059.
(11) Frank, R. L.; Davis, H. R., Jr.; Drake, S. S.; McPherson, J. B., Jr. J. Am. Chem. Soc. 1944, 66, 1509-1510.
(12) Rossi, R. A.; de Rossi, R. H. J. Org. Chem. 1974, 39, 855-856.
(13) Pereira, W., Close, V.: Patton, W.; Halpern, B. J. Org. Chem. 1969, 34, 2032-2034.
(14) Taber, D. F.; Amedio, J. C. Jr.; Patel, Y. K. J. Org. Chem. 1985, 50, 3618-3619.
(15) Christophe Motter, Olivier Hamelin, Jean-Pierre Depres J. Org. Chem. 1999, 64, 1380-1382.
(16) Seebach, D.; Thaler, A.; Blaser, D.; Ko. S. Y. Helv. Chim. Acta 1991, 74, 1102-1118.
(17) (a)Kunz, H.; Waldmann, H. Angew. Chem., Int. Ed. Engl. 1983, 22, 62.(b)Waldmann, H.; Kunz, H. J. Org. Chem. 1988, 53, 4172-4175.
(18) Kubota, M.; Yamamoto, T.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1979, 52, 146-150.
(19) Kim, Y.-J.; Osakada, K.; Takenaka, A.; Yamamoto, A. J. Am. Chem. Soc. 1990, 112, 1096-1104.
(20) Blossey, E. C.; Turner, L. M.; Neckers, D. C. Tetrahedron Lett. 1973, 1823-1826.
(21) (a)Yazawa, H.; Tanaka, K.; Kariyone, K. Tetrahedron Lett. 1974, 3995-3996. (b)Hisashi Yamamoto, Science.2000, 1140-1142.
(22) Pereyre, M.; Colin, G.; Delvigne, J.-P. Bull. Soc. Chim. Fr. 1969, 262-263.
(23) (a) Otera, J.; Yano, T.; Kawabata, A.; Nozaki, H. Tetrahedron Lett. 1986, 27, 2383-2386. (b) Otera, J.; Dan-oh, N.; Nozaki, H. J. Org. Chem. 1991, 56, 5307-5311.
(24) (a)Otera, J.; Ioka, S.; Nozaki, H. J. Org. Chem, 1989, 54, 4013-4014.(b) Athanassios Giannis, Angew.Chem.Int.Ed. 2001, 40. 3672
(25) (a) Seebach, D.; Hungerbuhler, E.; Naef, R.; Schnurrenberger, D.; Weidmann, B.; Zuger, M. Synthesis, 1982, 138-141. (b) Seebach, Scheffold, R., Ed.; Otto Salle: Frankfurt, 1983; Vol. 3, p 217. (c) Imwinkelreid, R.; Schiess, M.; Seebach, D. Org. Syn. 1987, 65, 230-235.
(26) Teruaki Mukayyama, Atsuro Inubushi, Shinji Suda, Ryuichiro Hara, and Shu Kobayashi, Chem. Lett. 1990, 1015-1018.
(27) Olga Bortolini, Fulvio Di Furia and Giorgio Modena J. Mole. Cat, 33 (1985) 241-244
(28) Hwang, D. R.; Chen, C. P. and Uang, B. J. J. Chem. Soc. Chem. Commun. 1999, 1207.
(29) Stephen D.; Hessell, Edward T. ,J. Organo. Chem. 1987, 263-274.
(30) Advance Organic Chemistry (Fourth Edition), Carey Sundberg pp.822-831
(31) Guy Bertrand, J. Org. Chem. 1994, 59, 4035-4036.
(32) Datta E. Ponde, Vishnu H. Deshpande, Vivek J. Bulbule, Arumugam Sudalai, and Anil S. Gajare, J. Org. Chem. 1998, 63, 1058-1063.
(33) For recent reviews, see: (a) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007. (b) Mikami, K.; Shimizu, M. Chem. Rev. 1992, 92, 1021. (c) Pu, L. Chem. Rev. 1998, 98, 2405. (d) Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley and Sons: New York, 1994. For leading references, see: (e) Kobayashi, S.; Komiyama, S.; Ishitani, H. Angew. Chem., Int. Ed. 1998, 37, 979. (f) Ishihara, K.; Nakamura, H.; Yamamoto, H. J. Am. Chem. Soc. 1999, 121, 7720.
(34) (a) Noyori, R. Chem. Soc. Rev. 1989, 18, 187. (b) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345.
(35) Pirkle, W. H.; Schreiner, J. L. J. Org. Chem. 1981, 46, 4988.
(36) (a) Feringa, B.; Wynberg, H. Bioorg. Chem. 1978, 7, 397. (b) Kawashima, M.; Hirata, R. Bull. Chem. Soc. Jpn. 1993, 66, 2002.
(37) Toda, F.; Tanaka, K. J. Org. Chem. 1988, 53, 3607.
(38) Miyano, S.; Kawahara, K.; Inoue, Y.; Hashimoto, H. Tetrahedron Lett. 1987, 355.
(39) D. R. Hwang, C. P. Chen and B. J. Uang. J. Chem. Soc. Chem. Commun.1999,1207-1208.
(40) (a) M. J. S. Dewar and T. Nakaya. J. Am. Chem. Soc. 1968, 90, 7134. (b) K. Yamamoto, H. Fukushima, Y. Okamoto, K. Hatada and M. Nakazaki. J. Chem. Soc., Chem. Commun., 1984, 1111.
(41) B. Feringa and H. Wynberg. J. Org. Chem. 1981, 46, 2547.
(42) (a) F. Toda, K. Tanaka and S. Iwata. J. Org. Chem. 1989, 54, 3007. (b) B. Feringa and H. Wynberg. J. Org. Chem. 1981, 46, 2547. (c) K. Ding, Y. Wang, L. Zhang and Y. Wu. Tetrahedron, 1996, 52, 1005.
(43) T. S. Li, H.Y. Duan, B. Z. Li, B. B.Tewari and S. H. Li. J. Chem. Soc. Perkin Trans 2. 1999, 1, 291-293.
(44) M. Noji, M. Nakajima and K. Koga. Tetrahedron Lett. 1994, 35, 7983.
(45) (a) M. Smreina, J. Polakova, S. Vyskocil and P. Kocovsky. J. Org. Chem. 1993, 58, 4534. (b) B. Feringa and H. Wynberg. Tetrahedron Lett. 1977, 18, 4447; Bioorg. Chem. 1978, 7, 397. (c) Brussee, J. L. G. Groenendijk, J. M. te Kopple and A.C. A. Jansen, Tetrahedron, 1985, 41, 3313.
(46) (a) T. Sakamoto, H. Yonehara and C. Pac. J. Org. Chem. 1994, 59, 6859. (b) T. Sakamoto, H. Yonehara and C. Pac. J. Org. Chem. 1997, 62, 3194.
(47) B. Feringa and H. Wynberg. Bioorg. Chem. 1978, 7, 397.
(48) J. Brussee, J. L. G. Groenendijk, J. M. te Kopple and A. C. A. Jansen. Tetrahedron, 1985, 16, 3313-3319.
(49) M. Kawashima and R. Hirta. Bull. Chem. Soc. Jpn., 1993, 66, 2002-2005.
(50) S. Miyano, K. Kawahara, Y. Inoue, and H. Hashimoto. Tetrahedron Lett. 1987, 355-356.
(51) H. William, Pirkle and J. L. Schreiner. J. Org. Chem. 1981, 46,4988-4991.
(52) M. Fuji and A. Honda. J. Heterocyclic Chem 1992, 29, 931.
(53) J. Jacques, C.Fouguoy, Tetrahedron Lett, 1971, 4617.
(54) (a) M. Smrcina, M. Lorenc, V. Hanus, P. Sedmera, and P. Kocovsky. J. Org. Chem. 1992, 57, 1917-1920. (b) M. Smrcina, S. Vyskocil, B. Mara, M. Polasek, T. A. Claxton, A. P. Abbott, and P. Kocovsky. J. Org. Chem.1994, 59, 2156-2163; J. Org. Chem. 1939, 58, 4534-4538.
(55) Nakajima, K.; Kojimo, M.; Fujita, J. Chem. Lett. 1986, 1483.
(56) (a)Merlic, C.A.; Yang, J.; Kozolowski, M.C. Org. Lett. 2001, 3, 1137-1140 (b)Carol A. Mulrooney, Xiaolin Li, Kozolowski, M.C. J. Am. Chem. Soc. 2003, 125, 6856-6857
(57) (a)C & EN news, 2001, 79, 20, pp.45-57 (b)Nivrutti B. Barhate and Chien-Tien Chen Org. Lett. 2002, 4, 2529-2532; (c)Hon, S.-W.; Li, C.-H.; Kuo, J.-H.; Chen, C.-T. Org. Lett. 2001, 3, 869
(58) (a) Chang-Ying Chu, Biing-Jiun Uang, Tetrahedron Asym, 2003, 14, 53-55 (b) Gong, L. Chem. Commun. 2002, 914. (c) Gong, L. Angew. Chem. Int. Ed. 2002, 41, 4532. (d) Gennari, C. In Comprehensive Organic Synthesis: Additions to C-X -Bonds Part 2; Heathcock, C. H., Ed.; Pergamon Press: Oxford, 1991; Chapter. 2.4.
(59) (a) Evans, D. A.; Burgey, C. S.; Kozlowski, M. C.; Tregay, S. W. J. Am. Chem. Soc. 1999, 121, 686 and references therein. (b) Nishiyama, H.; Kondo, M.; Nakamura, T.; Itoh, K. Organometallics 1991, 10, 500. (c) Bolm, C.; Bienewald, F. Angew. Chem., Int. Ed. Engl. 1995, 34, 2640. (d) (1) Annis, D. A.; Jacobsen, E. N. J. Am. Chem. Soc. 1999, 121, 4147. (2) Zhang, W.; Jacobsen, E. N. J. Org. Chem. 1991, 56, 2296.
(60) Theriot, L. J.; Carlisle, G. O.; Hu, H. J. J. Inorg. Chem. 1969, 31, 2841.
(61) (a)洪三文先生博士班畢業論文, (b)李春興先生碩士班畢業論文
(62) Theriot, L. J.; Carlisle, G. O.; Hu, H. J. J. Inorg. Chem. 1969, 31, 2841.
(63) W. Clark Still, Michael Kahn, and Abhijit Mitra, J. Org. Chem., Vol. 43, No. 14, 1978.