研究生: |
葉春國 Chun-Kuo Yeh |
---|---|
論文名稱: |
台東太麻里溪集水區地景變遷之研究 Analysis of Landscape Changes in the Taimali Watershed of Eastern Taiwan |
指導教授: |
廖學誠
Liaw, Shyue-Cherng |
學位類別: |
博士 Doctor |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 107 |
中文關鍵詞: | 自然干擾 、地景指標 、馬可夫鏈 、改變軌跡 、邏輯斯迴歸 |
英文關鍵詞: | natural disturbance, landscape metrics, Markov chain, change trajectory, logistic regression |
論文種類: | 學術論文 |
相關次數: | 點閱:187 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
土地覆蓋變遷分析對於提供集水區土地經營、監測及規劃等資訊是極為重要的。本研究呈現2005~2011年間東台灣太麻里集水區大規模地景變遷與其頻繁自然干擾間的關係。為了解土地覆蓋變遷與自然干擾間之關係,我們採取複合式的地景分析途徑,應用了地景指標、馬可夫鏈模式、改變軌跡及邏輯斯迴歸模式。組成性地景指標分析結果顯示崩塌地面積擴張7.5倍(15.52 km2),而森林面積縮減10.6%(20.90 km2)。空間型態地景指標分析結果顯示森林區塊面積變得較小、形狀不規則及空間上破碎;然而,崩塌地區塊面積變得較大及空間上較為聚集。因此,研究區土地覆蓋變遷主要發生於森林覆蓋的減少和破碎,以及崩塌地數目和面積的增加。在研究期間,地景中最顯著的面積改變是林地轉變為崩塌地和河道,分別約為15.82 km2 和 6.73 km2。就轉移機率而言,人為區塊轉變為林地和河道的機率為最大。透過馬可夫鏈的分析,本研究產生了三種各類土地覆蓋比例未來(2017~2035)的預測狀況。三種預測狀況分別被視為對於下游居民生命及產財具有高、中、低的風險性。
FL、FC及 VR 三個改變軌跡共占整個集水區全部改變面積的75.65%,他們被視為主要的改變趨勢,而且代表太麻里集水區的整體地景(OL)變遷趨勢。改變分析結果顯示地景變遷易發生於畢祿山層地質、鄰近斷層和河道、坡度大於35°及東向坡的條件下。就模式驗證而言,FC模式具有最高的AUC值。然而,RCI指標值顯示變遷機率的預測皆能高度符合實際的改變軌跡。因此,本研究得出的四個邏輯斯迴歸模式有助於地景變遷的預測。
Analysis of land cover changes is fundamental for providing information in relation to watershed land management, monitoring, and planning. This study reveals large-scale land cover transformation in relation to frequent natural disturbances within the Taimali watershed in eastern Taiwan during 2005–2011. To understand land cover changes in relation to natural disturbances, a combined landscape analysis approach using landscape metrics, the Markov chain model, change trajectories, and the logistic regression model is used. Results of composition metrics analysis show that areas of landslides within the region had expanded 7.5 times (by 15.52 km2), but areas of forest had shrunk by 10.6% (20.90 km2). Spatial configuration metrics analysis indicates that patches of forest are becoming smaller, more irregular, and more spatially fragmented, but that landslide patches are expanding and becoming more spatially aggregated. It is considered that land cover changes in the area have occurred mainly through loss and fragmentation of forest cover, and an increase in the number and area of landslides. During 2005–2011, the most noticeable area changes related to transitions from forest cover to landslides (15.82 km2) and channels (6.73 km2). Results show the transition probabilities of human-made patches changing into forest cover and channel corridors are the greatest. Through Markov chain analysis, three future (2017–2035) projections of the proportions of each land cover type are produced. These three predictive statuses are regarded as posing a high, moderate, and low risk, respectively, to life and property downstream.
Three change trajectories, FL, FC, and VR, covering 75.65% of the entire changed area, are considered main changes in trend and represent overall landscape (OL) changes in the Taimali watershed. Results of change analysis indicate that the occurrence of landscape change is subject to the geologic condition of Pilushan Formation, the vicinities of faults and rivers, a gradient greater than 35°, and the eastward slope. As for model validation, the FC model has the highest AUC value. RCI values suggest that the prediction of change probabilities could correspond with the actual change trajectories very well. Therefore, the four logistic regression models are useful tools in the landscape change prediction.
Allison, P. D. (1999). Logistic regression using the SAS system: theory and application. Cary, NC: SAS Institute Inc., p 49-51.
Antwi, E. K., Krawczynski, R., & Wiegleb, G. (2008). Detecting the effect of disturbance on habitat diversity and land cover change in a post-mining area using GIS. Landscape and Urban Planning, 87, 22–32.
Baasch, A., Tischew, S., & Bruelheide, H. (2010). Twelve years of succession on sandy substrates in a post-mining landscape: a Markov chain analysis. Ecological Applications, 20(4), 1136–1147.
Bai, S. B., Wang, J., Lü, G. N., Zhou, P. G., Hou, S. S., & Xu, S. N. (2010). GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology, 115, 23–31.
Baker, W. L. (1989). A review of models of landscape change. Landscape Ecology, 2(2), 111–113.
Balzter, H. (2000). Markov chain models for vegetation dynamics. Ecological Modelling, 126, 139–154.
Benabdellah, B., Albrecht, K. F., Pomaz, V. L., Denisenko, E. A., & Logofet, D. O. (2003). Markov chain models for forest successions in the Erzgebirge, Germany. Ecological Modelling, 159, 145–160.
Botequilha Leitão, A., Miller, J., Ahern, J., & McGarigal, K. (2006). Measuring landscapes: a planner’s handbook. Washington: Island Press, p 48.
Braimoh, A. K., & Vlek, P. L. G. (2005). Land-cover change trajectories in northern Ghana. Environmental Management, 36(3), 356–373.
Bui, D., Lofman, O., Revhaug, I., & Dick, O. (2011). Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Natural Hazards, 59, 1413–1444.
Carmona, A., & Nahuelhual, L. (2012). Combining land transitions and trajectories in assessing forest cover change. Applied Geography, 32, 904–915.
Central Weather Bureau (CWB) (2005). Typhoon warning. URL: http://rdc28.cwb.gov.tw/data/Warnings/2005/HAITANG/Warnings_alert5.200500000000.pdf
Central Weather Bureau (CWB) (2009). Typhoon warning. URL: http://rdc28.cwb.gov.tw/data/Warnings/2009/MORAKOT/Warnings_alert8.200900000000.pdf
Central Weather Bureau (CWB) (2010). Typhoon warning. URL: http://rdc28.cwb.gov.tw/data/Warnings/2010/FANAPI/Warnings_alert11.201000000000.pdf
Chang, C. W., Lin, P. S., & Tsai, C. L. (2011). Estimation of sediment volume of debris flow caused by extreme rainfall in Taiwan. Engineering Geology, 123, 83–90.
Chu, H. J., Lin, Y. P., Huang, Y. L., & Wang, Y. C. (2009). Detecting the land-cover changes induced by large-physical disturbances using landscape metrics, spatial sampling, simulation and spatial Analysis. Sensors, 9, 6670–6700.
Chuang, C. W., Lin, C. Y., Chien, C. H., & Chou, W. C. (2011). Application of Markov-chain model for vegetation restoration assessment at landslide areas caused by a catastrophic earthquake in Central Taiwan. Ecological Modelling, 222, 835–845.
Chung, C. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazard, 30, 451–472.
Domon, G., & Bouchard, A. (2007). The landscape history of Godmanchester (Quebec, Canada): two centuries of shifting relationships between anthropic and biophysical factors. Landscape Ecology, 22, 1201-1214.
Dramstad, W. E., Olson, J. D. & Forman, R. T. T. (1996). Landscape ecology principles in landscape architecture and land-use planning. Washington: Island Press. p 14.
Florinsky, I. V. (2012). Digital terrain analysis in soil science and geology. Oxford: Elsevier. p 9–10.
Forman, R. T. T. (1995). Land mosaics: the ecology of landscapes and regions. Cambridge: Cambridge University Press. p 359.
Frans, L. M. (2008) Estimating the probability of elevated nitrate concentrations in ground water in Washington State. U.S. Geological Survey Scientific Investigations Report, 2008–5025, 22 p.
Frondoni, R., Mollo, B., & Capotorti, G. (2011). A landscape analysis of land cover change in the Municipality of Rome (Italy): spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landscape and Urban Planning, 100, 117–128.
George, D. & Mallery, P. (2010). SPSS for windows step by step: a simple guide and reference, 17.0 update. 4th edition. Boston: Pearson, p 328–329.
Cardille, J. A., & Turner, M. G. (2002). Understanding landscape metrics I. In: Gergel, S. E., & Turner, M. G. (Eds.), Learning landscape ecology: a practical guide to concepts and techniques. New York: Springer-Verlag, p 91.
Gustafson, E. J. (1998). Quantifying landscape spatial pattern: what is the state of the art? Ecosystems,1, 143–156.
Hietel, E., Waldhardt, R., & Otte, A. (2004). Analysing land-cover changes in relation to environmental variables in Hesse, Germany. Landscape Ecology, 19, 473–489.
Hilbe, J. M. (2009). Logistic regression models. London: Chapman & Hall/ CRC Press, p 254–258.
Ho, C. S. (1986). An introduction to the geology of Taiwan: explanatory text of the geologic map of Taiwan. Taipei: Central geological survey, MOEA, R.O.C, p 57–61. (In Chinese).
Hong, N. M., Chu. H. J., Lin, Y. P., & Deng, D. P. (2010). Effects of land cover changes induced by large physical disturbances on hydrological responses in Central Taiwan. Environmental Monitoring and Assessment, 166, 503–520.
Hosmer, D.W., & Lemeshow, S. (2000). Applied logistic regression. 2nd edition. New York: John Wiley & Sons, p156–162.
Huang, M. H., Dreger, D., Bürgmann, R., Yoo, S. H., & Hashimoto, M. (2013). Joint inversion of seismic and geodetic data for the source of the 2010 March 4, Mw 6.3 Jia-Shian, SW Taiwan, earthquake. Geophysical Journal International, 193, 1608–1626.
Kintz, D. B., Young, K. R., & Grews-Meyer, K. A. (2006). Implications of land use/land cover change in the buffer zone of a national park in the tropical Andes. Environmental Management, 38(2), 238–252.
Kleinbaum, D. G., & Klein, M. (2010). Logistic regression: a self-learning text. New York: Springer-Verlag. p 4–8.
Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J. P., Srivastava, A. K., & Sugi, M. (2010). Tropical cyclones and climate change. Nature Geoscience, 3, 157–163.
Koi, T., Hotta, N., Ishigaki, I., Matuzaki, N., Uchiyama, Y., & Suzuki, M. (2008). Prolonged impact of earthquake-induced landslides on sediment yield in a mountain watershed: The Tanzawa region, Japan. Geomorphology, 101, 692–702.
Lin, Y. P., Chang, T. K., Wu, C. F., Chiang, T. C., & Lin, S. H. (2006). Assessing impacts of typhoons and the Chi-Chi earthquake on Chenyulan watershed landscape pattern in central Taiwan using landscape metrics. Environmental Management, 38(1), 108–125.
Lin, Y. P., Chu, H. J., Wang, C. L., Yu, H. H., & Wang, Y. C. (2009). Remote sensing data with the conditional Latin hypercube sampling and geostatistical approach to delineate landscape changes induced by large chronological physical disturbances. Sensors, 9, 148–174.
Lin, Y. P., Chu, H. J., & Wu, C. F. (2010). Spatial pattern analysis of landslide using landscape metrics and logistic regression: a case study in Central Taiwan. Hydrology and Earth System Sciences Discussions, 7, 3423–3451.
Logofet, D. O., & Lesnaya, E. V. (2000). The mathematics of Markov models: what Markov chains can really predict in forest successions. Ecological Modelling, 126, 285–298.
Malaviya, S., Munsi, M., Oinam, G., & Joshi, P. K. (2010). Landscape approach for quantifying land use land cover change (1972–2006) and habitat diversity in a mining area in Central India (Bokaro, Jharkhand). Environmental Monitoring and Assessment, 170, 215–229.
Mandelbrot, B. B. (1977). Fractals: form, chance and dimension. San Francisco: W.H. Freeman and Company.
McGarigal, K., Cushman, S.A., & Ene, E. (2012). FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available on: http://www.umass.edu/landeco/research/fragstats/fragstats.html
Mena, C. F. (2008). Trajectories of land-use and land-cover in the Northern Ecuadorian Amazon: Temporal composition, spatial configuration, and probability of change. Photogrammetric Engineering & Remote Sensing, 74(6), 737–751.
Menard, S. (2002). Applied logistic regression analysis. 2nd edition. Thousand Oaks, CA: Sage Publications, Inc., p 76.
Mertens, B., & Lambin, E. F. (2000). Land-cover-change trajectories in Southern Cameroon. Annals of the Association of American Geographers, 90(3), 467–494.
Miliaresis, G. C. (2008). Quantification of terrain processed. In: Zhou, Q., Lees, B., & Tang, G. A. (Eds.), Advances in digital terrain analysis. Berlin Heidelberg: Springer-Verlag, p. 16–17.
Muller, M. R., & Middleton, J. (1994). A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landscape Ecology, 9(2), 151–157.
Munsi, M., Malaviya, S., Oinam, G., & Joshi, P. K. (2010). A landscape approach for quantifying land-use and land-cover change (1976–2006) in middle Himalaya. Regional Environmental Change, 10, 145–155.
Nandi, A., & Shakoor, A. (2009). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110, 11–20.
Ohlmacher, G. C. (2007). Plan curvature and landslide probability in regions dominated by earth flows and earth slides. Engineering Geology, 91, 117–134.
Olsen, L. M., Dale, V. H., & Foster, T. (2007). Landscape patterns as indicators of ecological change at Fort Benning, Georgia, USA. Landscape and Urban Planning, 79, 137–149.
O'Neill, R. V., Hunsaker, C. T., Jones, K. B., Riitters, K. H., Wickham, J .D., Schwartz, P. M., Goodman, I. A., Jackson, B. L., & Baillargeon, W. S. (1997). Monitoring environmental quality at the landscape scale. BioScience, 47, 513–520.
Paudel, S., & Yuan, F. (2012). Assessing landscape changes and dynamics using patch analysis and GIS modeling. International Journal of Applied Earth Observation and Geoinformation, 16, 66–76.
Pearce, J., & Ferrier, S. (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133, 225–245.
Rau, R. J., Lee, J. C., Ching, K. E., Lee, Y. H., Byrne, T. B., & Chen, R. Y. (2012). Subduction-continent collision in southwestern Taiwan and the 2010 Jiashian earthquake sequence. Tectonophysics, 578, 107-116.
Reddy, C. S., Rao, K. R. M., Pattanaik, C., & Joshi, P. K. (2008). Assessment of large scale deforestation of Nawarangpur district, Orissa, India: a remote sensing based study. Environmental Monitoring and Assessment, 154, 325–335.
Rindfuss, R. R., Walsh, S. J., Turner, B. L., Fox, J., & Mishra, V. (2004). Developing a science of land change: challenges and methodological issues. Proceedings of the National Academy of Science of the United States of America, 101(39), 13976–13981.
Ruiz, J., & Domon, G. (2009). Analysis of landscape pattern change trajectories within areas of intensive agricultural use: case study in a watershed of southern Que´bec, Canada. Landscape Ecology, 24, 419-432.
Tattoni, C., Ciolli, M., & Ferretti, F. (2011). The fate of priority areas for conservation in protected areas: a fine-scale Markov chain approach. Environmental Management, 47, 263–278.
Tu, J. Y., Chou, C., & Chu, P. S. (2009). The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with Western North Pacific–East Asian climate change. Journal of Climate, 22(13), 3617-3628.
Turner, M. G. (1989). Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics, 20, 171–197..
Turner, M. G., Gardner, R. H., & O’Neill, R. V. (2001). Landscape ecology in theory and practice: pattern and process. New York: Springer-Verlag.
Verburg, P. H., van Berkel, D. B., van Door, A. M., van Eupen, M., & van den Heiligenberg, H. A. R. M. (2010). Trajectories of land use change in Europe: a model-based exploration of rural futures. Landscape Ecology, 25, 217-232.
Wang, D., Gong, J., Chen, L., Zhang, L., Song, Y., & Yue, Y. (2012). Spatio-temporal pattern analysis of land use/cover change trajectories in Xihe watershed. International Journal of Applied Earth Observation and Geoinformation, 14, 12–21.
Wang, D., Gong, J., Chen, L., Zhang, L., Song, Y., & Yue, Y. (2013). Comparative analysis of land use/cover change trajectories and their driving forces in two small watersheds in the western Loess Plateau of China. International Journal of Applied Earth Observation and Geoinformation, 21, 241–252.
Webster, P. J., Holland, G. J., Curry, J. A., & Chang, H. -R. (2005). Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844-1846.
Weng, Q. (2002). Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modeling. Journal of Environmental Management, 64, 273–284.
Wu, Q., Li, H. Q., Wang, R. S., Paulussen, J., He, Y., Wang, M., Wang, B. H., & Wang, Z. (2006a). Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landscape and Urban Planning, 78, 322–333.
Wu, Y. M., Chen, Y. G., Chang, C. H., Chung, L. H., Teng, T. L., Wu, F. T., & Wu, C. F. (2006b). Seismogenic structure in a tectonic suture zone: With new constraints from 2006 Mw6.1 Taitung earthquake. Geophysical Research Letters, 33, L22305.
Wu, Y. M., Chen, Y. G., Shin, T. C., Kuochen, H., Hou, C. S., Hu, J. C., Chang, C. H., Wu, C. F., & Teng, T. L. (2006c). Coseismic versus interseismic ground deformations, fault rupture inversion and segmentation revealed by 2003 Mw 6.8 Chengkung earthquake in eastern Taiwan. Geophysical Research Letters, 33, L02312.
Xiao, H., & Ji, W. (2007). Relating landscape characteristics to non-point source pollution in mine waste-located watersheds using geospatial techniques. Journal of Environmental Management, 82, 111-119.
Zhou, Q., Li, B., & Kurban, A. (2008a). Trajectory analysis of land cover change in arid environment of China. International Journal of Remote Sensing, 29(4), 1093-1107.
Zhou, Q., Li, B., & Kurban, A. (2008b). Spatial pattern analysis of land cover change trajectories in Tarim Basin, northwest China. International Journal of Remote Sensing, 29(19), 5495-5509.
Zonneveld, I. S. (1990). Scope and concepts of landscape ecology as an emerging science. In Zonneveld, I. S., & Forman, R. T. T. (Eds.), Changing landscapes: an ecological perspective. New York: Springer-Verlag.