簡易檢索 / 詳目顯示

研究生: 江祖恩
Chiang, Tzu-En
論文名稱: 共域及異域分布的田代氏黃芩及布烈氏黃芩族群與其土壤基質對根圈微生物組成的協同效應
Synergic effect of the sympatric and allopatric populations of Scutellaria tashiroi and S. playfairi and the soil substrates on the rhizosphere microbial composition
指導教授: 廖培鈞
Liao, Pei-Chun
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 52
中文關鍵詞: α-多樣性β-多樣性根圈微生物核心微生物操作分類單元
英文關鍵詞: alpha diversity, beta diversity, rhizosphere microbiome, core plant microbes, operational taxonomic unit
DOI URL: http://doi.org/10.6345/NTNU202001514
論文種類: 學術論文
相關次數: 點閱:94下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 土壤微生物群落與植物有不同的交互作用,而土壤微生物群落的組成受到了寄主植物因子與環境因子的雙重選汰壓力影響。目前較缺乏的是對常見土壤微生物種類的生態功能理解,以及對單一微生物各分類位階在群落內的組成比例及生態功能探討。本研究我將利用兩種最近其分化的台灣特有種黃芩:布烈氏黃芩及田代氏黃芩之根圈微生物作為研究對象,四個不同地理區包含一個共域之樣點共五個樣點。利用16SrRNA Metagenome來評估根圈微生物群落的組成,並以操作分類單元(operational taxonomic unit, OTU)、綱為單位進行分析。本研究使用變異數分析(Analysis of variance, ANOVA)檢測各樣本間α-多樣性是否有顯著差異、使用冗餘分析(redundancy analysis, RDA)檢測寄主植物、土壤基質、土壤顆粒大小對β-多樣性的影響,並使用Clamtest找出微生物在不同寄主間、與不同環境間的分布情形。結果發現寄主植物可以顯著影響樣本間的α-多樣性、土壤基質影響β-多樣性所占比例最多。除此之外,本研究除了探討不同類群微生物的功能,也找到八種與兩種寄主植物都有密切相關的核心微生物,有助於我們更加了解植物與微生物間的交互作用。

    There are some of different interactions between soil microbiomes community and plants. The composition of soil microbiomes are influenced by the double selection pressure form the factor of external environments and the factor of host-plants. The problem is we lack not only the knowledge of ecological function of common soil microbiomes but also the investigate to the ecological function of single phylum, class or single microbial species in the community now. Here, I will use soil rhizosphere microbiomes of two recently divergent plants, Scutellaria playfairii and S. tashiroi, and collect soil from four different geography areas including one sympatric area total five plots to understand the forces determining rhizosphere microbiome assembly. Use 16S rRNA metagenomes to evaluate the composition of rhizosphere microbiome, and use operational taxonomic unit and the level of class to analysis data. Using analysis of variance to detect the alpha diversity are significant difference or not between different samples. Using redundancy analysis to detect the influences of beta diversity by host-plant, substrate and soil particle size. Using clamtest to find out the distribution of microbes between different host-plants and different environment.
    The results that we find is the alpha diversity is significant influenced by host-plant.
    The substrate is the most influential factor to the beta diversity. Besides this, I also explore the different function between different kind of microbes. This study find eight different microbes that we call them “core plant microbes” which have closely related to our two research host-plants. It may be helpful for us to have more clearly understand to the interactions between plant and microbes.

    中文摘要 iii 英文摘要 iv 研究背景 1 研究目的與問題 5 材料方法 6 結果 13 討論 31 結論 44 參考文獻 45

    Abuzinadah, R. A., & Read, D. J. (1986). The Role Of Proteins In The Nitrogen Nutrition Of Ectomycorrhizal Plants. I. Utilization Of Peptides And Proteins By Ectomycorrhizal Fungi. New Phytologist, 103(3), 481–493. https://doi.org/10.1111/j.1469-8137.1986.tb02886.x

    Adeyemo, O., & Onilude, A. (2018). Antimicrobial Potential of a Rare Actinomycete Isolated from Soil: Crossiella sp.-EK18. Journal of Advances in Microbiology, 11(2), 1-15. https://doi.org/10.9734/jamb/2018/41989

    Akiyama, K., Matsuzaki, K., & Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435(7043), 824-827. https://doi.org/10.1038/nature03608

    Bailey, V. L., Bilskis, C. L., Fansler, S. J., Mccue, L. A., Smith, J. L., & Konopka, A. (2012). Measurements of microbial community activities in individual soil macroaggregates. Soil Biology and Biochemistry, 48, 192–195. https://doi.org/10.1016/j.soilbio.2012.01.004

    Bailey, V. L., Mccue, L. A., Fansler, S. J., Boyanov, M. I., Decarlo, F., Kemner, K. M., & Konopka, A. (2013). Micrometer-scale physical structure and microbial composition of soil macroaggregates. Soil Biology and Biochemistry, 65, 60–68. https://doi.org/10.1016/j.soilbio.2013.02.005

    Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., & Meier-Kolthoff, J. P. et al. (2016). Correction for Barka et al., Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiology and Molecular Biology Reviews, 80(4), 1-43, Iii-Iii. https://doi.org/10.1128/mmbr.00044-16

    Beneduzi, A., Ambrosini, A., & Passaglia, L. M. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4 suppl 1), 1044-1051. https://doi.org/10.1590/s1415-47572012000600020

    Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x

    Cavender-Bares, J., Keen, A., & Miles, B. (2006). Phylogenetic Structure Of Floridian Plant Communities Depends On Taxonomic And Spatial Scale. Ecology, 87(sp7), S109-S122. https://doi.org/ 10.1890/0012-9658(2006)87[109:psofpc]2.0.co;2

    Chang, C.-W., Huang, B.-H., Lin, S.-M., Huang, C.-L., & Liao, P.-C. (2016). Changes of diet and dominant intestinal microbes in farmland frogs. BMC Microbiology, 16(1), 1-13. https://doi.org/10.1186/s12866-016-0660-4

    Chase, J., & Leibold, M. (2003). Ecological Niches: Linking Classical and Contemporary Approaches (Interspecific interactions). University of Chicago Press.

    Chazdon, R. L., Chao, A., Colwell, R. K., Lin, S.-Y., Norden, N., & Letcher, S. G. et al. (2011). A novel statistical method for classifying habitat generalists and specialists. Ecology, 92(6), 1332–1343. https://doi.org/10.1890/10-1345.1

    Chiang, Y.-C., Huang, B.-H., & Liao, P.-C. (2012). Diversification, Biogeographic Pattern, and Demographic History of Taiwanese Scutellaria Species Inferred from Nuclear and Chloroplast DNA. PLoS ONE, 7(11), e50844. https://doi.org/10.1371/journal.pone.005084

    Clarke, K. (1993). Non-parametric multivariate analyses of changes in community structure. Austral Ecology, 18(1), pp.117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Curd, E. E., Martiny, J. B. H., Li, H., & Smith, T. B. (2018). Bacterial diversity is positively correlated with soil heterogeneity. Ecosphere, 9(1), e02079. https://doi.org/10.1002/ecs2.2079

    Delgado-Baquerizo, M., Oliverio, A. M., Brewer, T. E., Benavent-González, A., Eldridge, D. J., Bardgett, R. D. et al. (2018). A global atlas of the dominant bacteria found in soil. Science, 359(6373), 320–325. https://doi.org/10.1126/science.aap9516

    DeLong, E., & Rosenberg, E. (2014). The Prokaryotes. Springer Reference.

    Erlandson, S., Wei, X., Savage, J., Cavender-Bares, J., & Peay, K. (2018). Soil abiotic variables are more important than Salicaceae phylogeny or habitat specialization in determining soil microbial community structure. Molecular Ecology, 27(8), 2007–2024. https://doi.org/10.1111/mec.14576

    Freilich, S., Zarecki, R., Eilam, O., Segal, E. S., Henry, C. S., & Kupiec, M. et al. (2011). Competitive and cooperative metabolic interactions in bacterial communities. Nature Communications, 2(1), 589. https://doi.org/10.1038/ncomms1597

    Hashem, A., Tabassum, B., & Abd_Allah, E. F. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004

    Heino, J., Melo, A. S., & Bini, L. M. (2014). Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshwater Biology, 60(2), 223–235. https://doi.org/10.1111/fwb.12502

    Huang, B.-H., Huang, C.-W., Huang, C.-L., & Liao, P.-C. (2017). Continuation of the genetic divergence of ecological speciation by spatial environmental heterogeneity in island endemic plants. Scientific Reports, 7(1), 5465. https://doi.org/10.1038/s41598-017-05900-1

    Huang, B.-H., Chang, C.-W., Huang, C.-W., Gao, J., & Liao, P.-C. (2018). Composition and Functional Specialists of the Gut Microbiota of Frogs Reflect Habitat Differences and Agricultural Activity. Frontiers in Microbiology, 8, 2670. https://doi.org/10.3389/fmicb.2017.02670

    Hutchison, L. J. (1990). Studies on the systematics of ectomycorrhizal fungi in axenic culture. II. The enzymatic degradation of selected carbon and nitrogen compounds. Canadian Journal of Botany, 68(7), 1522–1530. https://doi.org/10.1139/b90-194

    Ivanova, A. A., Zhelezova, A. D., Chernov, T. I., & Dedysh, S. N. (2020). Linking ecology and systematics of acidobacteria: Distinct habitat preferences of the Acidobacteriia and Blastocatellia in tundra soils. Plos One, 15(3), e0230157. https://doi.org/10.1371/journal.pone.0230157

    Jaiswal, S. K., & Dakora, F. D. (2019). Widespread Distribution of Highly Adapted Bradyrhizobium Species Nodulating Diverse Legumes in Africa. Frontiers in Microbiology, 10, 310. https://doi.org/10.3389/fmicb.2019.00310

    Jangid, K., Williams, M. A., Franzluebbers, A. J., Schmidt, T. M., Coleman, D. C., & Whitman, W. B. (2011). Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biology and Biochemistry, 43(10), 2184–2193. https://doi.org/10.1016/j.soilbio.2011.06.022

    Janssen, P. H. (2006). Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S rRNA and 16S rRNA Genes. Applied and Environmental Microbiology, 72(3), 1719–1728.
    https://doi.org/ 10.1128/aem.72.3.1719-1728.2006

    Jombart, T. (2008). Package ‘adegenet’. Bioinforma. Appl. Note 24, 1403–1405. https://doi.org/10.1093/bioinformatics/btn129

    Jurburg, S. D., Natal-Da-Luz, T., Raimundo, J., Morais, P. V., Sousa, J. P., Elsas, J. D., & Salles, J. F. (2018). Bacterial communities in soil become sensitive to drought under intensive grazing. Science of The Total Environment, 618, 1638-1646. https://doi.org/10.1016/j.scitotenv.2017.10.012

    Kubota, Y., Hirao, T., Fujii, S.-J., & Murakami, M. (2011). Phylogenetic beta diversity reveals historical effects in the assemblage of the tree floras of the Ryukyu Archipelago. Journal of Biogeography, 38(5), 1006–1008. https://doi.org/10.1111/j.1365-2699.2011.02491.x

    Kubota, Y., Hirao, T., Fujii, S.-J., Shiono, T., & Kusumoto, B. (2014). Beta diversity of woody plants in the Japanese archipelago: the roles of geohistorical and ecological processes. Journal of Biogeography, 41(7), 1267–1276. https://doi.org/10.1111/jbi.12290

    Kubota, Y., Shiono, T., & Kusumoto, B. (2014). Role of climate and geohistorical factors in driving plant richness patterns and endemicity on the east Asian continental islands. Ecography, 38(6), 639–648. https://doi.org/10.1111/ecog.00981

    Lange, M., Habekost, M., Eisenhauer, N., Roscher, C., Bessler, H., & Engels, C. et al. (2014). Biotic and Abiotic Properties Mediating Plant Diversity Effects on Soil Microbial Communities in an Experimental Grassland. PLoS ONE, 9(5), e96182. https//doi.org/ 10.1371/journal.pone.0096182

    Lee, H., Kim, D., Lee, S., Park, S., Yoon, J., Seong, C. N., & Ka, J. (2017). Reyranella terrae sp. nov., isolated from an agricultural soil, and emended description of the genus Reyranella. International Journal of Systematic and Evolutionary Microbiology, 67(6), 2031-2035. https://doi.org/10.1099/ijsem.0.001913

    Leff, J. W., Jones, S. E., Prober, S. M., Barberán, A., Borer, E. T., & Firn, J. L et al. (2015). Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences, 112(35), 10967–10972. https://doi.org.10.1073/pnas.1508382112

    Li, H., Xu, Z., Yan, Q., Yang, S., Nostrand, J. D. V., & Wang, Z. et al. (2017). Soil microbial beta-diversity is linked with compositional variation in aboveground plant biomass in a semi-arid grassland. Plant and Soil, 423(1-2), 465–480. https://doi.org/10.1007/s11104-017-3524-2

    Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., & Malfatti, S. et al. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488(7409), 86–90. https://doi.org/10.1038/nature11237

    Lynch, M. D. J., & Neufeld, J. D. (2015). Ecology and exploration of the rare biosphere. Nature Reviews Microbiology, 13(4), 217–229. https://doi.org/10.1038/nrmicro3400

    Macarthur, R. H., & Macarthur, J. W. (1961). On Bird Species Diversity. Ecology, 42(3), 594–598. https://doi.org/10.2307/1932254

    Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C., Eldridge, D. J., Ochoa, V., & Gozalo, B. et al. (2015). Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences, 112(51), 15684–15689.
    https://doi.org/ 10.1073/pnas.1516684112

    Mayfield, M. M., & Levine, J. M. (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13(9), 1085–1093. https://doi.org/ 10.1111/j.1461-0248.2010.01509.x

    McArdle, B. and Anderson, M., (2001). Fitting Multivariate Models To Community Data: A Comment On Distance-Based Redundncy Analysis. Ecology, 82(1), pp.290-297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2

    Mendes, L. W., Kuramae, E. E., Navarrete, A. A., Veen, J. A., & Tsai, S. M. (2014). Taxonomical and functional microbial community selection in soybean rhizosphere. The ISME Journal, 8(8), 1577-1587. https://doi.org/10.1038/ismej.2014.17

    Montecchia, M. S., Tosi, M., Soria, M. A., Vogrig, J. A., Sydorenko, O., & Correa, O. S. (2015). Pyrosequencing Reveals Changes in Soil Bacterial Communities after Conversion of Yungas Forests to Agriculture. Plos One, 10(3), e0119426. https://doi.org/10.1371/journal.pone.0119426

    Navarrete, A. A., Kuramae, E. E., Hollander, M. D., Pijl, A. S., Veen, J. A., & Tsai, S. M. (2012). Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiology Ecology, 83(3), 607-621. https://doi.org/10.1111/1574-6941.12018

    Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. et al. (2013). Package ‘Vegan’. Community Ecology Package, Version 2(9), 1-295. Available at: http://CRAN.R-project.org/package=vegan

    Papaioannou, T. and Hsu, J., (1997). Multiple Comparisons: Theory and Methods. Biometrics, 53(4), p.1561. https://doi.org/10.2307/2533528

    Parsley, L. C., Linneman, J., Goode, A. M., Becklund, K., George, I., & Goodman, R. M. et al. (2011). Polyketide synthase pathways identified from a metagenomic library are derived from soil Acidobacteria. FEMS Microbiology Ecology, 78(1), 176-187. https://doi.org/10.1111/j.1574-6941.2011.01122.x

    Pfeiffer, S., Mitter, B., Oswald, A., Schloter-Hai, B., Schloter, M., Declerck, S., & Sessitsch, A. (2016). Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiology Ecology, 93(2), fiw242. https://doi.org/10.1093/femsec/fiw242

    Phoenix, G. K., Johnson, D. A., Muddimer, S. P., Leake, J. R., & Cameron, D. D. (2020). Niche differentiation and plasticity in soil phosphorus acquisition among co-occurring plants. Nature Plants, 6(4), 349–354. https://doi.org/10.1038/s41477-020-0624-4

    Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. (2008). The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321(1-2), 341–361. https//doi.org/10.1007/s11104-008-9568-6

    Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Frontiers in Physiology, 8, 667. https://doi.org/10.3389/fphys.2017.00667

    Ranjani, A., Dhanasekaran, D., & Gopinath, P. (2020). An Introduction to Actinobacteria. Retrieved 17 August 2020, from. https://www.intechopen.com/books/actinobacteria-basics-and-biotechnological-applications/an-introduction-to-actinobacteria

    Ratzke, C., & Gore, J. (2018). Modifying and reacting to the environmental pH can drive bacterial interactions. PLOS Biology, 16(3), e2004248. https://doi.org/10.1371/journal.pbio.2004248

    Schlaeppi, K., Dombrowski, N., Oter, R. G., Themaat, E. V. L. V., & Schulze-Lefert, P. (2013). Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proceedings of the National Academy of Sciences, 111(2), 585–592. https://doi.org/10.1073/pnas.1321597111

    Schneider, K., Migge, S., Norton, R. A., Scheu, S., Langel, R., Reineking, A., & Maraun, M. (2004). Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biology and Biochemistry, 36(11), 1769–1774. https://doi.org/10.1016/j.soilbio.2004.04.033

    Schreiter, S., Ding, G., Heuer, H., Neumann, G., Sandmann, M., & Grosch, R. et al. (2014). Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Frontiers in Microbiology, 5, 144. https://doi.org/10.3389/fmicb.2014.00144

    Sharma, R., John, S. J., Damgaard, D. M., & Mcallister, T. A. (2003). Extraction of PCR-Quality Plant and Microbial DNA from Total Rumen Contents. Biotechniques, 34(1), 92–97. https://doi.org/10.2144/03341st06

    Smith, A., Marín-Spiotta, E., Graaff, M. D., & Balser, T. (2014). Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change. Soil Biology and Biochemistry, 77, 292–303. https://doi.org/10.1016/j.soilbio.2014.05.030

    Stackebrandt, E., & Goebel, B. M. (1994). Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. International Journal of Systematic and Evolutionary Microbiology, 44(4), 846–849. https://doi.org/10.1099/00207713-44-4-846

    Stein, A., Gerstner, K., & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17(7), 866–880. https://doi.org/ 10.1111/ele.12277

    Tasnim, N., Abulizi, N., Pither, J., Hart, M. M., & Gibson, D. L. (2017). Linking the Gut Microbial Ecosystem with the Environment: Does Gut Health Depend on Where We Live? Frontiers in Microbiology, 8, 1935. https://doi.org/10.3389/fmicb.2017.01935

    Trivedi, C., Reich, P. B., Maestre, F. T., Hu, H.-W., Singh, B. K., & Delgado-Baquerizo, M. (2019). Plant-driven niche differentiation of ammonia-oxidizing bacteria and archaea in global drylands. The ISME Journal, 13(11), 2727–2736. https://doi.org/10.1038/s41396-019-0465-1

    Walters, W. A., Jin, Z., Youngblut, N., Wallace, J. G., Sutter, J., & Zhang, W. et al. (2018). Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proceedings of the National Academy of Sciences, 115(28), 7368-7373. https://doi.org/10.1073/pnas.1800918115

    Wang, R., Zhang, H., Sun, L., Qi, G., Chen, S., & Zhao, X. (2017). Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Scientific Reports, 7(1), 343. https://doi.org/10.1038/s41598-017-00472-6

    Ward, N. L., Challacombe, J. F., Janssen, P. H., Henrissat, B., Coutinho, P. M., & Wu, M. et al. (2009). Three Genomes from the Phylum Acidobacteria Provide Insight into the Lifestyles of These Microorganisms in Soils. Applied and Environmental Microbiology, 75(7), 2046-2056. https://doi.org/10.1128/aem.02294-08

    Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30(4), 407–407. https://doi.org/10.2307/1948435

    Wu, S.-H., Huang, B.-H., Huang, C.-L., Li, G., & Liao, P.-C. (2017). The Aboveground Vegetation Type and Underground Soil Property Mediate the Divergence of Soil Microbiomes and the Biological Interactions. Microbial Ecology, 75(2), 434–446. https://doi.org/10.1007/s00248-017-1050-7

    Zelezniak, A., Andrejev, S., Ponomarova, O., Mende, D. R., Bork, P., & Patil, K. R. (2015). Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proceedings of the National Academy of Sciences, 112(20), 6449–6454. https://doi.org/10.1073/pnas.1421834112

    Zhalnina, K., Louie, K. B., Hao, Z., Mansoori, N., Rocha, U. N. D., & Shi, S. et al. (2018). Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 3(4), 470–480. https://doi.org/10.1038/s41564-018-0129-3

    Zhou, D., Zhang, H., Bai, Z., Zhang, A., Bai, F., & Luo, X. et al. (2015). Exposure to soil, house dust and decaying plants increases gut microbial diversity and decreases serum immunoglobulin E levels in BALB/c mice. Environmental Microbiology, 18(5), 1326–1337. https://doi.org/10.1111/1462-2920.12895

    行政院農業委員會農業試驗所(2016)。土壤資料供應查詢平台。行政院農業委員會,農業試驗所https://tssurgo.tari.gov.tw/Tssurgo/

    下載圖示
    QR CODE