簡易檢索 / 詳目顯示

研究生: 李啟安
Lee, Chi-An
論文名稱: 運用乾式轉印法製作二維材料元件
Dry transfer of two-dimensional materials for device fabrication.
指導教授: 陳啟東
Chen, Chii-Dong
江佩勳
Jiang, Pei-hsun
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 45
中文關鍵詞: 石墨烯拓樸絕緣體二硫化鉬PDMS量子霍爾效應
DOI URL: https://doi.org/10.6345/NTNU202203653
論文種類: 學術論文
相關次數: 點閱:207下載:51
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的二維材料轉印中分為濕式轉印以及乾式轉印,濕式轉印一般都會使用甲基丙烯酸甲酯(Polymethylemthacrylate;PMMA)作為轉印媒介,但此方式往往困擾於去除PMMA光阻聚合物時,光阻殘留液體影響到二維材料的電性以及鍵結等特性。而傳統乾式轉印法所使用的膠帶以及其聚合物也往往汙染樣品,且無法轉印置所需的區域。本文改以聚二甲基矽氧烷(Polydimethylsiloxane,PDMS)作為剝離與轉印二維材料的媒介,提供了全程從剝離與轉印,完全乾式的轉印形式。本文運用此技術應用於轉印石墨烯、拓樸絕緣體(Bi_2 Se_3)以及二硫化鉬(MoS_2)製作成場效電晶體元件,且製備石墨烯霍爾元件以及以氮化硼為基底的石墨烯場效電晶體,並以拉曼光譜檢驗樣品經轉印後仍保持與轉印前良好與相同的品質,並量測到Shubnikov-de Hass effect。

    致謝 i 摘要 ii 目錄 iii 圖目錄 iv Chapter1基本概念 1 1.1石墨烯基本觀念 1 1.2 石墨烯場效電晶體 5 1.3 藍道能階與Shubnikov-de Hass effect 7 Chapter2實驗儀器 10 2.1光學微影技術 10 2.2熱蒸鍍系統 12 2.3掃描式電子顯微鏡Scanning Electron Microscope (SEM) 12 2.4電子束微影 14 2.5拉曼光譜儀 16 2.6電性量測系統 18 2.7向量網路分析儀 20 Chapter3石墨烯電晶體場效電晶體製作與量測 23 3.1HOPG石墨烯樣品製程 23 3.2乾式轉印法 24 3.3晶片設計 28 3.4二維材料元件拉曼光譜儀分析 31 3.5石墨烯元件電性量測 38 3.5.1 樣品一 38 3.5.2樣品二 39 3.5.3樣品三 40 Chapter4總結與未來展望 43 References 44

    1. 莊鎮宇, 石墨烯簡介與熱裂解化學氣相合成
    方法合成石墨烯的近期發展. 物理雙月刊, 2011/8/25: p. 155-163.
    2. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-9.
    3. Brey, L. and H.A. Fertig, Electronic states of graphene nanoribbons studied with the Dirac equation. Physical Review B, 2006. 73(23).
    4. Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern Physics, 2009. 81(1): p. 109-162.
    5. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10): p. 351-355.
    6. Orlita, M., et al., Approaching the dirac point in high-mobility multilayer epitaxial graphene. Phys Rev Lett, 2008. 101(26): p. 267601.
    7. 林永昌, 呂., 鄭碩方,邱博文, 石墨烯之電子能帶特性與其元件應用. 物理雙月刊, 2011.4.
    8. Wallace, P.R., The Band Theory of Graphite. Physical Review, 1947. 71(9): p. 622-634.
    9. 盧怡穎、鄭弘杰、廖均達、陳逸聰, 石墨烯於電晶體的發展與應用, in 物理雙月刊. 2011/8/25. p. 172-177.
    10. Zhang, Y., et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 2009. 459(7248): p. 820-3.
    11. Hong, X., et al., High-mobility few-layer graphene field effect transistors fabricated on epitaxial ferroelectric gate oxides. Phys Rev Lett, 2009. 102(13): p. 136808.
    12. PMGI-Resists-data-sheetV-rhcedit-102206.
    13. Chii-Dong Chen, C.-S.W., Scanning-Electron-Microscope-Based E-Beam
    Writer and Its Applications in the Fabrication of
    Nano-Electronic Devices. 科儀新知第二十六卷第六期, 2005.6.
    14. 謝雲生, 雷射拉曼光譜簡介. 物理雙月刊, 1985: p. 25-28.
    15. Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009. 457(7230): p. 706-10.
    16. Ferrari, A.C., et al., Raman spectrum of graphene and graphene layers. Phys Rev Lett, 2006. 97(18): p. 187401.
    17. Hasan, M.Z. and C.L. Kane, Colloquium: Topological insulators. Reviews of Modern Physics, 2010. 82(4): p. 3045-3067.
    18. Zhang, J., et al., Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett, 2011. 11(6): p. 2407-14.
    19. Li, H., et al., From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Advanced Functional Materials, 2012. 22(7): p. 1385-1390.

    下載圖示
    QR CODE