簡易檢索 / 詳目顯示

研究生: 林建宏
Chien Hung Lin
論文名稱: 矽、鍺超晶格樣品之拉曼光譜研究
Raman Study of Ge/Si(100) Superlattices
指導教授: 賈至達
Chia, Chih-Ta
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 81
中文關鍵詞: 拉曼超晶格折疊聲子連續性散射位能井溫度相關
英文關鍵詞: Raman, Superlattices, Folded acoustic phonon, Continuous Emission, Quantum well, Temperature-dependent
論文種類: 學術論文
相關次數: 點閱:210下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用拉曼散射光譜分析MBE成長的矽、鍺超晶格樣品之結構特性、晶層厚度及E1能隙。以不同波長的雷射入射樣品,所得之拉曼光譜在100cm-1以下低頻部份,有清晰的縱向折疊聲學聲子訊號,由Rytov理論模型及光彈力學計算結果,擬合矽、鍺超晶格樣品折疊聲子拉曼位移及拉曼散射強度,所求得之矽、鍺超晶格中矽、鍺層的平均厚度與樣品TEM測得之結果一致。依據Linear-chain-model理論分析Ge-Ge光學聲子,得知矽、鍺超晶格樣品中鍺層粗糙之程度。當以532.2nm波長雷射入射所測得之拉曼光譜在200cm-1附近有一波包,此為連續性散射結果,表示這個波長雷射能量接近共振能帶,以連續性散射理論擬合求出共振能階之能量為2.32eV,此值較鍺塊材的E1能隙2.22eV為高。應是鍺層受到量子井侷限作用而使E1能隙增大約0.1eV。以476nm雷射入射,觀察到高頻部份樣品能隙所產生的螢光效應,其中心能量與連續性散射得到的結果相同;其半高寬約300±50meV,故而有類似連續性能帶結構,導致我們在514.5nm、488nm雷射入射時仍可看到連續性散射訊號。在比對不同能量雷射入射時,Ge-Ge聲子、Si-Ge聲子相對於Si-Si聲子的強度比值,可明顯看出其對應的共振雷射能量皆為接近樣品能隙的中心能量。在變溫拉曼散射實驗中,發現聲學聲子的頻率、半高寬受溫度影響的變化量遠小於光學聲子,顯示兩種聲子是源於不同之振動機制。因為折疊聲子考慮的是層跟層之間的振動模,其波向量為超晶格週期的函數,然而在300K以下的範圍內,溫度變化對超晶格厚度影響非常小,故聲學聲子之拉曼譜線相對於光學聲子變化非常小。

    1、摘要 2、緒論 參考資料 3、矽鍺超晶格樣品製成條件及結構 3.1 樣品製成:sample 21、22、23 3.2 樣品TEM圖 參考資料 4、超晶格中折疊聲子 4.1 拉曼光譜儀 4.1.1 雷射光源系統 4.1.2 雷射拉曼光譜儀系統 4.1.3 抽真空系統 4.1.4 散射光的收集 4.2 拉曼散射 4.2.1 拉曼散射原理簡介 4.2.2 矽鍺超晶格樣品拉曼光譜 4.3 折疊聲子形成 4.3.1 Linear-chain model 4.4 Rytov 理論計算折疊聲子模 4.5 由Rytov理論擬合折疊聲子光譜鋒值 4.6 彈光模式計算折疊聲子拉曼散射強度比 4.7 折疊聲子強度比擬合 4.8 結論 參考資料 5、矽、鍺超晶格樣品鍺層粗糙度 5.1 侷限在鍺層的Ge-Ge mode 5.2 超晶格樣品粗糙度 5.3 結論 參考資料 6、矽、鍺超晶格樣品量子井能隙 6.1 矽鍺能帶結構 6.2 連續性散射理論 6.3 變波長拉曼光譜 6.4 由連續性散射、螢光光譜求共振能帶 6.5 光學、聲學聲子能帶共振現象討論 6.6 結論 參考資料 7、溫度相關-矽鍺超晶格拉曼光譜 7.1 矽、鍺層聲速隨溫度變化關係 7.2 矽、鍺層折射率隨溫度變化關係 7.3 變溫時矽鍺層厚度變化 7.4 變化超晶格樣品溫度之拉曼光譜 7.5 利用(4.4.2)式計算不同溫度折疊聲子頻率 7.6 結論 參考資料 8、附錄 8.1 拉曼光譜操作 8.1.1 拉曼散射的量子理論 8.1.2 MICRO和MACRO的使用與光譜測量 8.1.3 散射光得收集方式 8.1.4 分光儀 8.2 UV/VB/IR 光譜儀 8.3 反射吸收光譜

    緒論
    [1]U. Woggon, Optical Properties of Semiconductor Quantum Dots, Springer Tracts in Modern Physics, V. 136 (Berlin, Heidelberg, 1997)
    [2]S. P. Beaumont, C. N. Sotomayor-Torres, Science and Engineering of One-and Zero-Dimensional Semiconductors, Vol. 214, (Plenum Press, New York, 1990)
    [3]D. J. Lockwood and J. F. Young, Light Scattering in Semiconductor Structures and Superlattices (Plenum, New York, 1992)
    [4]M. W. C. Dharma-wardana, P. X. Zhang, and D. J. Lockwood, Finite-size Effects on Superlattice Acoustic Phonons, Phys. Rev. B, Vol.48, 11960(1993)
    [5]R. W. G. Syme, *D. J. Lockwood, and J. -M.Baribeau, Phys. Rev. B, Vol.59, 2207(1998)
    [6]D. J. Lockwood, M. W. C. Dharma-wardana, J.-M.Baribeau, and D. C. Houghton, Phys. Rev. B, Vol. 35, 2243 (1986)
    [7]H. Brugger, G. Abstreiter, H. Jorke, H. J. Herzog, and E. Kasper, Phys. Rev. B 33, 5928 (1986)
    [8]E. Kasper, H. Kibbel, H. Jorke, H. Brugger, E. Friess, and G. Abstreiter, Phys. Rev. B 38, 3599 (1988)
    [9]H. Brugger, E. Friess, G. Abstreiter, E. Kasper, and H. Kibbel, Semicond. Sci. Technol. 3, 1166 (1988)
    [10]M. I. Alonso, F. Cerdeira, D. Niles, M. Cardona, E. Kasper, andH. Kibbel, J. Appl. Phys. 66, 5645 (1989)
    [11]Y. Jin, S. L. Zhang, G. G. Qin, G. L. Zhou, and M. R. Yu, J. Phys. : Condens. Matter 4, 3867 (1992)
    [12]P. X. Zhang, D. J. Lockwood, H. J. Labbe´, and J. -M. Baribeau, Phys. Rev. B 46, 9881 (1992)
    [13]M. W. C. Dharma-wardana, P. X. Zhang, and D. J. Lockwood, Phys. Rev. B 48, 11 960 (1993)
    [14]A. S. Barker, Jr. , J. L. Merz, and A. C. Gossard, Phys. Rev. B 17, 3181 (1978)
    [15]C. Colvard, R. Merlin, M. V. Klein, and A. C. Gossard, Phys. Rev. Lett. 45, 298 (1980)
    [16]M. Nakayama, K. Kubota, T. Kanata, H. Kato, S. Chika, and N. Sano, Jpn. J. Appl. Phys. 24, 1331(1985)
    第3章
    [1]H. H. Cheng, C.-T. Chia, V. A. Markov, X. J. Guo, C. C. Chen, Y. H. Peng, C. H. Kuan, Thin Solid Films, 369, 182~184. (2000)
    [2]V. A. Markov, H. H. Cheng, Chih-Ta Chia , A. I. Nikiforov, V. A. Cherepanov, O. P. Pchelyakov, K. S. Zhuravlev, A. B. Talochkin, E. McGlynn, and M. O. Henry, Thin Solid Films, 369, 79~83. (2000)
    [3]M. Dynna, D. D. Perovic, and G. C. Weatherly, Philosophical Magazine A, Vol. 66, 375. (1992)
    [4]C. H. Lin, B. Chen, C. S. Chern, C. T. Chia, and H. H. Cheng, Folded Acoustic Phonon in Ge/Si Superlattice Quantum Dots Studied by Raman Scattering, 2001年中華民國物理學會年會壁報論文, PD4.(2001)(物理雙月刊, 二十三卷一期, 195~196頁)
    [5]C. H. Lin, B. Chen, C. S. Chern, C. T. Chia, and H. H. Cheng, Folded Acoustic Phonon in Ge/Si Superlattice Quantum Dots Studied by Raman Scattering, 2002年中華民國物理學會年會宣讀論文, DA5.(2002)(物理雙月刊, 二十四卷一期, 54頁)
    第4章
    [1]A. S. Barker, Jr., J. L. Merz, and A. C. Gossard, Phys. Rev. B 17, 3181(1978).
    [2]C. Colvard, T. A. Gant, and M. V. Klein, Phys. Rev. B 31, 2080(1985).
    [3]S. M. Rytov, Akust. Zh. 2, 71(1956) [Sov. Phys.-Acous. 2, 67(1956)].
    [4]C. Colvard, T. A. Gant, and M. V. Klein, Phys. Rev. B 31, 2080(1985).
    [5]W. Hayes and R. Loudon, Scattering of Light by Crystals (Wiley, New York, 1978).
    第5章
    [1]A. S. Barker, Jr., J. L. Merz, and A. C. Gossard, Phys. Rev. B 17, 3181(1978).
    [2]C. Colvard, T. A. Gant, and M. V. Klein, Phys. Rev. B 31, 2080(1985).
    [3]M. A. Araujo Silva, E. Ribeiro, P. A. Schulz, F. Cerdeira, and J. C. Bean, Phys. Rev. B, Vol. 53, 15871.(1995)
    第6章
    [1]Neil W. Ashcroft, N. David Mermin, Solid State Physics. P. 143~145. (1985)
    [2]T. Ebner, K. Thonke, R. Sauer, F. Schaeffler and H. J. Herzog, Phys. Rev. B, Vol. 57, 15448. (1997)
    [3]Frederick Seitz and David Turnbull, Solid State Physics, Vol. 18, P. 86. (1966)
    [4]V. F. Sapega, V. I. Belitsky, T. Ruf, H. D. Fuchs, M. Cardona, and K. Ploog, Phys. Rev. B, Vol. 46, 16005.(1992)
    [5]G. Höhler, Karlsruhe, Phnon Raman Scattering in Semiconductors, Quantum Wells and Supperlattices, P. 69~74. (1998)
    [6]L. Viña, S. Logothetidis, and M. Cardona, Phys. Rev. B, Vol 30, 1979 (1984)
    [7]R. Schorer, G. Abstreiter, H. Kibbel, and H. Presting, Phys. Rev. B, Vol. 50, 18211. (1994)
    [8]K. L. Teo, S. H. Kwok, P. Y. Yu, and Soumyendu Guha, Phys. Rev. B, Vol. 62, 1584.(1999)
    第7章
    [1]Charles Kittel, Introduction to Solid State Physics, P. 87~90. (Wiley, New York, 1996)
    [2]Otfried Madelung, Semiconductors-Basic Data, P. 17~33.(1996)
    [3]P. Lautenschlager, M. Garriga, L. Viña, and M. Cardona, Phys. Rev. B, Vol. 36, 4821 (1987)
    [4]L. Viña, S. Logothetidis, and M. Cardona, Phys. Rev. B, Vol 30, 1979 (1984)
    [5]Robert R. Reeber, Kai Wang, Materials Chemistry and Physics, Vol 46, 259. (1996)

    QR CODE