簡易檢索 / 詳目顯示

研究生: 卜擇安
Pu, Tse-An
論文名稱: 布穀鳥演算法應用於混合燃料電池電動機車之最佳能量管理
Optimal Energy Management Using Cuckoo Search Algorithm for a Fuel Cell Hybrid Electric Scooter
指導教授: 陳瑄易
Chen, Syuan-Yi
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 99
中文關鍵詞: 數位訊號處理器布穀鳥演算法最佳化最小等效油耗法混合電力系統電動機車規則庫均流控制直流-直流轉換器
英文關鍵詞: Digital Signal Processor, Cuckoo Search Algorithm, Optimization, Equivalent Consumption Minimization Strategy, Hybrid power system, Electric motor car, Rule base, Current sharing control, DC-DC converter
DOI URL: http://doi.org/10.6345/NTNU201901061
論文種類: 學術論文
相關次數: 點閱:306下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相較於傳統燃油式車輛,發展電動車成為主要趨勢之一,然而電動車價格昂貴,有續航力比不上燃油車之缺點,且電池性能決定了電動車的最大行程與充電時間,故針對電池特性發展提升電動車續航力,本論文選用燃料電池混合電力機車進行實測,針對燃料電池與鋰電池雙電力提出最佳化能量分配策略並進行探討、優化與改善,利用基本規則庫、最小等效油耗法,以及布穀鳥搜索演算法,輸入目前的馬達需求功率、電池殘電量適時的對電池進行即時控制,以直流-直流轉換器與數位訊號控制器實現電動機車之硬體架構,探討能耗改善幅度以達到能量最佳化及行駛距離延長等目的。本論文選用測試過程中能觀察停車、高低車速以及加減速之行駛於市區的ECE-40行車型態。
    為了比較最佳化能量管理策略與基本規則庫,首先透過數位訊號處理器下達控制命令於燃料電池車之電動機車整車控制器,透過整車控制器分配燃料電池之輸出功率於升壓轉換器並以機車實際測試,比較最佳化前後之數值其結果顯示行駛距離改善幅度約6.33%。
    由於燃料電池混合電力機車使用單模組升壓轉換器,針對燃料電池耗盡時無法有效控制鋰電池電壓,造成控制效果不佳而提出並聯式直流-直流轉換器,將上述最佳化能量管理策略應用於此並聯式直流-直流轉換器系統,最後將整車系統進行實車測試比較,經實驗結果顯示並聯式系統之行駛距離能改善0.94%。

    Compared with traditional fuel-based vehicles, the development of electric vehicles has become one of the main trends. However, electric vehicles are expensive, have endurance comparable to the shortcomings of fuel vehicles, and battery performance determines the maximum travel and charging time of electric vehicles. The development of characteristics enhances the endurance of electric vehicles. This paper selects fuel cell hybrid electric locomotives for actual measurement, proposes optimal energy allocation strategies for fuel cells and lithium batteries, and discusses, optimizes and improves them, using basic rule bases and minimum equivalent fuel consumption. Method, and cuckoo search algorithm, input current motor demand power, battery residual power, timely control of the battery, DC-DC converter and digital signal controller to achieve the hardware structure of the electric motor, to explore energy consumption improvement
    The amplitude is to achieve the purpose of energy optimization and driving distance extension. This paper selects the ECE-40 line model that can observe the parking, high and low speed and acceleration and deceleration in the urban area during the test.
    In order to optimize the energy management strategy and the basic rule base, firstly, the digital signal processor is used to issue a control command to the motor vehicle vehicle controller of the fuel cell vehicle, and the output power of the fuel cell is distributed to the boost converter through the vehicle controller. And the actual test of the scooter, comparing the values before and after optimization, the results show that the driving distance improvement is about 6.33%.
    Since the fuel cell hybrid electric locomotive uses a single-module boost converter, the lithium-ion battery voltage cannot be effectively controlled when the fuel cell is exhausted, and the control effect is not good, and a parallel DC-DC converter is proposed to optimize the energy management described above. The strategy is applied to this parallel DC-DC converter system. Finally, the vehicle system is compared with the actual vehicle test. The experimental results show that the driving distance of the parallel system can be improved by 0.94%.

    摘要 i ABSTRACT ii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 引言 1 1.2 研究背景與動機 1 1.3 研究目的 7 1.4 研究方法 8 1.5 研究架構 10 第二章 DC-DC轉換器系統介紹 11 2.1 雙向DC-DC升/降壓轉換器 11 2.2 雙向DC-DC轉換器模式分析 17 2.3 DC-DC轉換器並聯控制架構介紹 20 2.4 PID控制系統 25 第三章 燃料電池電動車控制架構 27 3.1 質子交換膜燃料電池模組 28 3.2 鋰電池模組 31 3.3 DSP之雙電力單模組轉換器架構 36 3.4 DSP之雙電力雙模組轉換器架構 37 第四章 DC-DC轉換器控制系統之最佳化能量管理策略控制 40 4.1 基本規則庫控制策略 40 4.2 適應函數設計 42 4.3 最小等效能耗法控制策略 44 4.4 布穀鳥搜索演算法簡介 47 4.5 基於布穀鳥搜索之能量管理控制策略 51 4.6 最小等效能耗法與布穀鳥搜索演算法比較 53 第五章 DC-DC轉換器系統之PSIM軟體建模 55 5.1 DC-DC轉換器電路設計 55 5.2 DSP架構 56 5.3 PSIM電路簡介 60 5.4 系統基本架構及功能 66 5.5 雙線性內插查表法 67 5.6 內迴路控制系統模擬 68 第六章 實驗平台介紹與結果討論 72 6.1 平台實驗說明 72 6.2 實驗方法 81 6.3 DSP實測ECE-40行車型態結果 82 6.4 雙向DC-DC轉換器實測ECE-40行車型態結果 91 第七章 結論與未來展望 96 7.1 結論 96 7.2 未來展望 96 參考文獻 97

    [1] 電動機車產業網,取自於: https://www.lev.org.tw/default.asp。
    [2] C. Y. Cheng, J. S. Hu, and M. F. Hsieh, “Energy management system with Bi-directional converter on hybrid sources electric scooters,” In IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society , Oct.29-Nov.1, 2017.
    [3] B. Mammano, “Distributed power systems,” Proceedings of Unitrode Power Supply Design Seminar , pp. 1-11, 1993。
    [4] 江炫樟,電力電子學,全華圖書,2003。
    [5] B. Laszlo “Paralleling Power Choosing and Applying the Best Technique for Load Sharing”, Proc. Texas Instrum, pp. 6-1, 2003.
    [6] C. Jamerson and C. Mullett, “Seven ways to parallel a magamp,” IEEE APEC , pp. 469-474, 1993.
    [7] J. Bocek and C. C. Liu, “Determining current sharing criterion for parallel operation of power converters in multi-module bus systems,” IEEE Conference on Power Electronics Specialists , 1990.
    [8] 游凱翔,不確定撓性機械系統之強健最佳 PID 控制器設計,碩士論文,國立高雄應用科技大學機械工程學系,高雄,2015。
    [9] J. G. Ziegler, and N. B. Nichols, “Optimum settings for automatic controllers,” Transactions of the ASME, vol. 64, pp. 759-768, 1942.
    [10] 林信全,基因演算法最佳化應用於THS油電混合動力系統,碩士論文,國立臺北科技大學電機工程學系,臺北,2017。
    [11] E. Vinot, “Comparison of different power-split architectures using a global
    optimisation design method”, Electric and Hybrid Vehicles, vol. 8,no. 3, 2016.
    [12] K. B. Liu, C. Y. Liu, Y. H. Liu, Y. C. Chien, B. S. Wang, and Y. S. Wong, “ Analysis and controller design of a universal bidirectional DC-DC converter,” Energies, vol. 9, no. 7, 2016.
    [13] 固緯電子實業股份有限公司,PEK-120使用手冊,臺北,2016。
    [14] 鄭明憲,具即時監測雙向並聯直流轉換器之研製,碩士論文,國立成功大學電機工程學系,臺南,2005。
    [15] 電源設計技術資訊網站,取自於
    https://micro.rohm.com/tw/techweb/knowledge/dentatsu/s-dentatsu/s-dentatsu03/3489
    [16] 簡正安,應用於雙向轉換器建構數位控制式三相變流器之研究,碩士論文,國立成功大學電機工程學系,臺南,2013。
    [17] X. Wang, M. Wu, L. Ouyang, and Q. Tang, “The application of GA-PID control algorithm to DC-DC converter,” IEEE In Proceedings of the 29th Chinese Control Conference, July. 29-31 , 2010.
    [18] 林揮凱,昇壓式轉換器之 PID 控制器多目標,碩士論文,國立高雄第一科技大學系統資訊與控制研究所,高雄,2013。
    [19] M. Tajjudin, M. H. F. Rahiman, N. Ishak,, R. Adnan, and H. Ismail, “Comparison between optimally-tuned PID with self-tuning PID for steam temperature regulation” International Conference on Intelligent and Advanced Systems , June. 12-14, 2012.
    [20] 廖峻廷,重力效應對可視性流道質子交換膜燃料電池陰極側水排除的影響與暫態特性分析,碩士論文,國立臺灣大學工程科學及海洋工程學研究所臺北,2010。
    [21] E. Ogungbemi, O. Ijaodola, F. N. Khatib, T. Wilberforce, Z. El Hassan, J. Thompson, and A. G. Olabi, “Fuel cell membranes–Pros and cons,” Energy, vol. 172, pp. 155-172, 2019.
    [22] E. L. González, J. S. Cuesta, F. J. V. Fernandez, F. I. Llerena, M. A. R. Carlini, C. Bordons, and A. Elfes, “Experimental evaluation of a passive fuel cell/battery hybrid power system for an unmanned ground vehicle,” International Journal of Hydrogen Energy, vol. 44, no. 25, pp. 12772-12782, 2019.
    [23] C. Y. Li , and G. P. Liu “ Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles ” Journal of power sources, vol. 192, no. 2, pp. 525-533, 2009.
    [24] J. Wu, J. Peng, H. He,, and J. Luo, “Comparative analysis on the rule-based control strategy of two typical hybrid electric vehicle powertrain” Energy Procedia, vol. 104, pp. 384-389, 2016.
    [25] X. S. Yang, and S. Deb, “Cuckoo search via Lévy flights” World Congress on Nature & Biologically Inspired Computing, pp. 210-214, 2009.
    [26] 王慶喜,郭曉波,基於萊維飛行的粒子群優化算法,計算機科學與信息工程學院,河南,2016。
    [27] 劉長平,葉春明,一種新穎的仿生群智能優化算法:螢火蟲算法,計算機應用研究,上海,江蘇,2011。
    [28] 倪富鳴,應用混和調變之三相主動雙橋式雙向直流轉換器,碩士論文,國立中山大學電機工程學系,高雄,2014。
    [29] 張卿杰,徐友,左楠,卞康君,手把手教你學DSP:基於TMS320F28335,北京航空航天大學出版社,2015。
    [30] PSIM User’s Guide, Powersim Inc, 2016.
    [31] 雙線性插值法,維基百科,2019取自於https://zh.m.wikipedia.org/zh-tw/%E5%8F%8C%E7%BA%BF%E6%80%A7%E6%8F%92%E5%80%BC

    下載圖示
    QR CODE