研究生: |
莊婉君 Wan-Chun Chuang |
---|---|
論文名稱: |
SCA8誘導型細胞之分子探討 Molecular characterization of SCA8 inducible cell line |
指導教授: |
謝秀梅
Hsieh, Hsiu-Mei |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 67 |
中文關鍵詞: | 脊髓小腦萎縮症 、CTG三核甘酸擴增 、3’ 端外顯子 、神經分化 、核糖核酸聚集團塊 、選擇性切割 |
英文關鍵詞: | Spinocerebellar ataxias, CTG trinucleotide repeat expansion, 3’UTR (untranslated region), neuron differenciation, RNA foci, alternative splicing |
論文種類: | 學術論文 |
相關次數: | 點閱:67 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脊髓小腦萎縮症第八型是一種晚發型自體顯性遺傳的神經退化疾病,其致病的原因是由於染色體13q21上的ATXN8OS基因在3’ 端外顯子上有一段不正常擴增的CTG三核甘酸所造成。目前對於此疾病的詳細致病機轉尚未了解,早期相關文獻指出ATXN8OS基因並不具有轉譯蛋白質的功能,然而,最近的文獻對於ATXN8OS基因,以及其對應股的ATXN8基因,支持一種雙向轉錄的機制假說,也就是說ATXN8基因有可能因為CAG擴增而轉譯出PolyQ蛋白質;而ATXN8OS基因則是會轉錄出帶有CUG擴增的致病RNA,因此SCA8的致病機制有可能會由蛋白質以及RNA兩種層面而致。為了更進一步了解SCA8致病的分子機制,我們實驗室以大鼠嗜鉻瘤細胞株(PC12),建立了帶有正常重複範圍(22R)以及不正常擴增(150R)兩種CTG擴增的基因片段的誘導型系統,希望以離體的模式快速觀測ATXNOS基因過度表現會對於神經細胞所產生的影響。從實驗中我們發現帶有致病範圍CTG擴增(150R)的細胞經過誘導基因表現之後,在細胞存活率,以及在神經分化長出的神經突起長度皆有降低的趨勢;除此之外,我們也在細胞內觀察到RNA foci的形成。由這些研究結果,我們可以發現ATXN8OS基因的過度表現會對神經細胞造成傷害,而我們也進一步想研究ATXN8OS基因過度表現是否對於與PC12細胞神經分化有關的一些訊息傳遞路徑造成影響,結果發現經由ATXN8OS基因過度表現所造成的神經分化不良,並非是直接影響其引導神經分化的訊息傳遞路徑,是否和RNA層面alternative splicing有關,進而影響一些調節因子及轉錄因子,則需要進一步相關的研究。
Spinocerebellar ataxia type 8 (SCA8) is an autosomal dominant late-onset neurodegenerative disease. The cause of SCA8 was originally proposed associated with CTG trinucleotide repeat at 3’UTR (untranslated region) of ATXN8OS gene, lying on chromosome 13q21. However, recent studies suggest that bidirectional transcription of ATXN8OS occurs, with its anti-strand, ataxin8 (ATXN8), which encodes a polyQ protein in the CAG orientation, and ATXN8OS transcribed into potentially pathogenic CUG transcripts. SCA8 may thus has both RNA and protein gain of function mechanisms. To understand the molecular pathogenic mechanism of SCA8, we have established inducible PC12 cells with ATXN8OS-22R (normal 22 CTG repeats) or -150R (expanded 150 CTG repeats). Our results show that the viability and neurite outgrowth were significantly reduced in cells with ATXN8OS-150R after induction. Furthermore, the proliferation rate of the cells with ATXN8OS-150R (clones 1 and 4) was obviously decreased by flow cytometry. In addition, the presence of RNA foci was identified in cells with ATXN8OS-22R and -150R. Further investigation in impairment of neurite outgrowth revealed that the neuron differenciation signal transduction pathways of PC12 cells might not be the major targets directly affected by ATXN8OS gene. Whether the mechanism of ATXN8OS gene resulted in hypoplasia of neurite outgrowth related to RNA level associated with alternative splicing needs further investigation.
林玄原。(2007)。脊髓小腦運動失調症之族群遺傳分析與CTG三核苷 重複擴增的分子致病研究。台灣師範大學研究所博士論文。
王薏婷。(2008)。以小鼠及細胞模式探討ATXN8OS過量表現之影響。 台灣師範大學研究所碩士論文。
Benzow KA, Koob MD (2002) The KLHL1-antisense transcript ( KLHL1AS) is evolutionarily conserved. Mamm Genome 13:134-141.
Bevan CL, Porter DM, Schumann CR, Bryleva EY, Hendershot TJ, Liu H, Howard MJ, Henderson LP (2006) The endocrine-disrupting compound, nonylphenol, inhibits neurotrophin-dependent neurite outgrowth. Endocrinology 147:4192-4204.
Brusse E, de Koning I, Maat-Kievit A, Oostra BA, Heutink P, van Swieten JC (2006) Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord 21:396-401.
Burnett BG, Andrews J, Ranganathan S, Fischbeck KH, Di Prospero NA (2008) Expression of expanded polyglutamine targets profilin for degradation and alters actin dynamics. Neurobiol Dis 30:365-374.
Charlet BN, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA (2002) Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Molecular cell 10:45-53.
Coffey ET, Smiciene G, Hongisto V, Cao J, Brecht S, Herdegen T, Courtney MJ (2002) c-Jun N-terminal protein kinase (JNK) 2/3 is specifically activated by stress, mediating c-Jun activation, in the presence of constitutive JNK1 activity in cerebellar neurons. J Neurosci 22:4335-4345.
Craig K, Keers SM, Archibald K, Curtis A, Chinnery PF (2004) Molecular epidemiology of spinocerebellar ataxia type 6. Annals of neurology 55:752-755.
Daughters RS, Tuttle DL, Gao W, Ikeda Y, Moseley ML, Ebner TJ, Swanson MS, Ranum LP (2009) RNA gain-of-function in spinocerebellar ataxia type 8. PLoS genetics 5:e1000600.
David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel JL, Brice A (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nature genetics 17:65-70.
Davis RJ (1999) Signal transduction by the c-Jun N-terminal kinase. Biochem Soc Symp 64:1-12.
Duenas AM, Goold R, Giunti P (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain 129:1357-1370.
Fardaei M, Rogers MT, Thorpe HM, Larkin K, Hamshere MG, Harper PS, Brook JD (2002) Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Human molecular genetics 11:805-814.
Flanigan K, Gardner K, Alderson K, Galster B, Otterud B, Leppert MF, Kaplan C, Ptacek LJ (1996) Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. American journal of human genetics 59:392-399.
Giunti P, Stevanin G, Worth PF, David G, Brice A, Wood NW (1999) Molecular and clinical study of 18 families with ADCA type II: evidence for genetic heterogeneity and de novo mutation. American journal of human genetics 64:1594-1603.
Harding AE (1993) Clinical features and classification of inherited ataxias. Advances in neurology 61:1-14.
Holmes SE, O'Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, Kwak NG, Ingersoll-Ashworth RG, Sherr M, Sumner AJ, Sharp AH, Ananth U, Seltzer WK, Boss MA, Vieria-Saecker AM, Epplen JT, Riess O, Ross CA, Margolis RL (1999) Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nature genetics 23:391-392.
Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, Stevanin G, Durr A, Zuhlke C, Burk K, Clark HB, Brice A, Rothstein JD, Schut LJ, Day JW, Ranum LP (2006) Spectrin mutations cause spinocerebellar ataxia type 5. Nature genetics 38:184-190.
Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, Weber C, Mandel JL, Cancel G, Abbas N, Durr A, Didierjean O, Stevanin G, Agid Y, Brice A (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature genetics 14:285-291.
Jing S, Tapley P, Barbacid M (1992) Nerve growth factor mediates signal transduction through trk homodimer receptors. Neuron 9:1067-1079.
Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10:381-391.
Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, et al. (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature genetics 8:221-228.
Kita Y, Kimura KD, Kobayashi M, Ihara S, Kaibuchi K, Kuroda S, Ui M, Iba H, Konishi H, Kikkawa U, Nagata S, Fukui Y (1998) Microinjection of activated phosphatidylinositol-3 kinase induces process outgrowth in rat PC12 cells through the Rac-JNK signal transduction pathway. J Cell Sci 111 ( Pt 7):907-915.
Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, Ranum LP (1999) An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nature genetics 21:379-384.
Leone M, Bottacchi E, D'Alessandro G, Kustermann S (1995) Hereditary ataxias and paraplegias in Valle d'Aosta, Italy: a study of prevalence and disability. Acta neurologica Scandinavica 91:183-187.
Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, Day JW, Ranum LP (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science (New York, NY 293:864-867.
Liu RY, Snider WD (2001) Different signaling pathways mediate regenerative versus developmental sensory axon growth. J Neurosci 21:RC164.
Lueck JD, Lungu C, Mankodi A, Osborne RJ, Welle SL, Dirksen RT, Thornton CA (2007) Chloride channelopathy in myotonic dystrophy resulting from loss of posttranscriptional regulation for CLCN1. American journal of physiology 292:C1291-1297.
Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT, Cannon SC, Thornton CA (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Molecular cell 10:35-44.
Mankodi A, Urbinati CR, Yuan QP, Moxley RT, Sansone V, Krym M, Henderson D, Schalling M, Swanson MS, Thornton CA (2001) Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Human molecular genetics 10:2165-2170.
Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, Khajavi M, McCall AE, Davis CF, Zu L, Achari M, Pulst SM, Alonso E, Noebels JL, Nelson DL, Zoghbi HY, Ashizawa T (2000) Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nature genetics 26:191-194.
Miller JW, Urbinati CR, Teng-Umnuay P, Stenberg MG, Byrne BJ, Thornton CA, Swanson MS (2000) Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. The EMBO journal 19:4439-4448.
Mutsuddi M, Marshall CM, Benzow KA, Koob MD, Rebay I (2004) The spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with staufen in Drosophila. Curr Biol 14:302-308.
Nemes JP, Benzow KA, Moseley ML, Ranum LP, Koob MD (2000) The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Human molecular genetics 9:1543-1551.
O'Rourke JR, Swanson MS (2009) Mechanisms of RNA-mediated disease. The Journal of biological chemistry 284:7419-7423.
Orr HT, Chung MY, Banfi S, Kwiatkowski TJ, Jr., Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature genetics 4:221-226.
Prochiantz A (1995) Neuronal polarity: giving neurons heads and tails. Neuron 15:743-746.
Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, Pearlman S, Starkman S, Orozco-Diaz G, Lunkes A, DeJong P, Rouleau GA, Auburger G, Korenberg JR, Figueroa C, Sahba S (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature genetics 14:269-276.
Qui MS, Green SH (1992) PC12 cell neuronal differentiation is associated with prolonged p21ras activity and consequent prolonged ERK activity. Neuron 9:705-717.
Ranum LP, Cooper TA (2006) RNA-mediated neuromuscular disorders. Annual review of neuroscience 29:259-277.
Sanpei K et al. (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nature genetics 14:277-284.
Savkur RS, Philips AV, Cooper TA (2001) Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nature genetics 29:40-47.
Schmahmann JD, Caplan D (2006) Cognition, emotion and the cerebellum. Brain 129:290-292.
Schols L, Bauer P, Schmidt T, Schulte T, Riess O (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet neurology 3:291-304.
Seng S, Avraham HK, Jiang S, Venkatesh S, Avraham S (2006) KLHL1/MRP2 mediates neurite outgrowth in a glycogen synthase kinase 3beta-dependent manner. Mol Cell Biol 26:8371-8384.
Sheu JY, Kulhanek DJ, Eckenstein FP (2000) Differential patterns of ERK and STAT3 phosphorylation after sciatic nerve transection in the rat. Exp Neurol 166:392-402.
Silva MC, Coutinho P, Pinheiro CD, Neves JM, Serrano P (1997) Hereditary ataxias and spastic paraplegias: methodological aspects of a prevalence study in Portugal. Journal of clinical epidemiology 50:1377-1384.
Silveira I, Coutinho P, Maciel P, Gaspar C, Hayes S, Dias A, Guimaraes J, Loureiro L, Sequeiros J, Rouleau GA (1998) Analysis of SCA1, DRPLA, MJD, SCA2, and SCA6 CAG repeats in 48 Portuguese ataxia families. American journal of medical genetics 81:134-138.
Thoenen H (1995) Neurotrophins and neuronal plasticity. Science 270:593-598.
Tischler AS, Greene LA (1975) Nerve growth factor-induced process formation by cultured rat pheochromocytoma cells. Nature 258:341-342.
Waetzig V, Herdegen T (2003) The concerted signaling of ERK1/2 and JNKs is essential for PC12 cell neuritogenesis and converges at the level of target proteins. Mol Cell Neurosci 24:238-249.
Wang GS, Kearney DL, De Biasi M, Taffet G, Cooper TA (2007) Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy. The Journal of clinical investigation 117:2802-2811.
Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74:589-607.
Wiggin GR, Fawcett JP, Pawson T (2005) Polarity proteins in axon specification and synaptogenesis. Dev Cell 8:803-816.
Worth PF, Giunti P, Gardner-Thorpe C, Dixon PH, Davis MB, Wood NW (1999) Autosomal dominant cerebellar ataxia type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3. American journal of human genetics 65:420-426.
Yabe I, Sasaki H, Chen DH, Raskind WH, Bird TD, Yamashita I, Tsuji S, Kikuchi S, Tashiro K (2003) Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Archives of neurology 60:1749-1751.
Yao R, Yoshihara M, Osada H (1997) Specific activation of a c-Jun NH2-terminal kinase isoform and induction of neurite outgrowth in PC-12 cells by staurosporine. J Biol Chem 272:18261-18266.
Zhou F, Zhang L, Wang A, Song B, Gong K, Hu M, Zhang X, Zhao N, Gong Y (2008) The association of GSK3 beta with E2F1 facilitates nerve growth factor-induced neural cell differentiation. J Biol Chem 283:14506-14515.
Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nature genetics 15:62-69.
Zoghbi HY (2000) Spinocerebellar ataxias. Neurobiology of disease 7:523-527.