研究生: |
林士傑 Lin, SHIH-CHIEH |
---|---|
論文名稱: |
矽灰/兩性離子型複合水膠作為混凝土自養護劑的可行性研究 Feasibility study of silica fume/amphoteric hydrogel composite as a concrete self-curing agent |
指導教授: |
許貫中
Hsu, Kung-Chung |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 兩性離子型 、水膠 、合成 、矽灰 、砂漿 、吸水率 、抗壓強度 、内部濕度 、乾縮 、自體收縮 |
英文關鍵詞: | silica fume |
DOI URL: | http://doi.org/10.6345/NTNU202001115 |
論文種類: | 學術論文 |
相關次數: | 點閱:120 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要目的為製備一種兩性離子型的吸水性水膠,使用丙烯醯胺、disodium 1-(4-(3-((carboxylatomethyl)dimethylammonio) propylamino)-4-oxobut-2-enoate)( 1-(4-(3-(((羧甲基)二甲基銨)丙基氨基)-4-氧代丁-2-烯酸酯)二鈉)) (CDP)和矽灰為單體,合成 SF/PCA,使用FT-IR作結構鑑定,探討單體比例、起始劑或交聯劑劑量和矽灰含量對於水膠在各種水溶液下吸水率的影響。
將SF/PCA水膠加到混凝土和水泥砂漿中,作為自養護劑時,探討單體比例和矽灰比例含量,對於水泥漿中對於水泥砂漿和混凝土抗壓強度、內部濕度、乾縮量和自體收縮量的影響。
實驗結果顯示, SF/PCA水膠,當AM/CDP= 4, APS= 0.7 mole%, MBA= 0.5 mole%, SF = 10 wt%時,在去離子水中、Pore solution和水泥漿濾液中的最大吸水率分別為480.3 g/g、130.3 g/g、81.3 g/g。
將SF/PCA水膠加入水泥砂漿和混凝土中,當水膠劑量為0.2 wt% 和矽灰含量為10 wt%時,對水泥砂漿和混凝土的抗壓強度和內部濕度增加、乾縮量和自體收縮量減少,有較佳的提升效果。
This thesis prepared a silica fume/amphoteric hydrogel composite SF/PCA as a concrete self-curing agent, is synthesized by acrylamide, disodium 1-(4-(3-((carboxylatomethyl)dimethylammonio) propylamino)-4-oxobut-2-enoate) (CDP) and Silica fume as monomer.FT-IR was used to identify the functional groups of the hydrogel. The effects of monomer ratio, initiator and crosslinker dosage, and silica fume content on the water absorbency of the resulted hydrogel in various aqueous solutions were studied and discussed.
SF/PCA hydrogel was added into mortar and cement. The effects of monomer ratio and silica fume content on the compressive strength, internal humidity, drying shrinkage and autogenous shrinkage in mortars and cements.
The results indicated that the highest water absorbency of all tested SF/PCA hydrogel were 480.3 g/g in water, 130.3 g/g in Pore solution,and 81.3 g/g in Cement slurry filtrate repectively, when SF/PCA = 4, APS = 0.7 mole%, MBA = 0.5 mole%, SF = 10 wt%. SF/PCA hydrogel with 0.2 wt% dosage and 10 wt% silica fume showed better performance in cementitious materials. Namely, this polymer could decrease the drying shrinkage and autogenous shrinkage, and increase the compressive strength and internal humidity in mortars and cements.
[1] M. Baniasadi, M. Minary-Jolandan, Alginate-Collagen Fibril Composite Hydrogel, Materials (Basel), 8 (2015) 799-814.
[2] N. Peng, D. Hu, J. Zeng, Y. Li, L. Liang, C. Chang, Superabsorbent Cellulose–Clay Nanocomposite Hydrogels for Highly Efficient Removal of Dye in Water, ACS Sustainable Chemistry & Engineering, 4 (2016) 7217-7224.
[3] A.S. Hoffman, Hydrogels for biomedical applications, Adv Drug Deliv Rev, 54 (2002) 3-12.
[4] T. Thimma Reddy, A. Takahara, Simultaneous and sequential micro-porous semi-interpenetrating polymer network hydrogel films for drug delivery and wound dressing applications, Polymer, 50 (2009) 3537-3546.
[5] X. Zhang, J. Wang, H. Jin, S. Wang, W. Song, Bioinspired Supramolecular Lubricating Hydrogel Induced by Shear Force, Journal of the American Chemical Society, 140 (2018) 3186-3189.
[6] J. Justs, M. Wyrzykowski, D. Bajare, P. Lura, Internal curing by superabsorbent polymers in ultra-high performance concrete, Cement and Concrete Research, 76 (2015) 82-90.
[7] O.M. Jensen, P.F. Hansen, Water-entrained cement-based materials: II. Experimental observations, Cement and Concrete Research, 32 (2002) 973-978.
[8] X.-Y. Liu, C.-H. Huang, C.-H. Zhuang, K.-C. Hsu, C.-H. Huang, An amphoteric hydrogel: Synthesis and application as an internal curing agent of concrete, Journal of Applied Polymer Science, 132 (2015).
[9] A.S. Hoffman, Hydrogels for biomedical applications, Adv Drug Deliv Rev, 64 (2012) 18-23.
[10] G.M. Eichenbaum, P.F. Kiser, D. Shah, S.A. Simon, D. Needham, Investigation of the Swelling Response and Drug Loading of Ionic Microgels: The Dependence on Functional Group Composition, Macromolecules, 32 (1999) 8996-9006.
[11] X.-P. Chen, G.-R. Shan, J. Huang, Z.-M. Huang, Z.-X. Weng, Synthesis and properties of acrylic-based superabsorbent, Journal of Applied Polymer Science, 92 (2004) 619-624.
[12] P.J. Flory, Principles of polymer chemistry, Ithaca : Cornell University Press, 1953.1953.
[13] J.P. Baker, H.W. Blanch, J.M. Prausnitz, Swelling properties of acrylamide-based ampholytic hydrogels: comparison of experiment with theory, Polymer, 36 (1995) 1061-1069.
[14] G.R. Mahdavinia, M.J. Zohuriaan-Mehr, A. Pourjavadi, Modified chitosan III, superabsorbency, salt- and pH-sensitivity of smart ampholytic hydrogels from chitosan-g-PAN, Polymers for Advanced Technologies, 15 (2004) 173-180.
[15] Y. Meng, J. Lu, Y. Cheng, Q. Li, H. Wang, Lignin-based hydrogels: A review of preparation, properties, and application, International Journal of Biological Macromolecules, 135 (2019) 1006-1019.
[16] S. Xu, L. Cao, R. Wu, J. Wang, Salt and pH responsive property of a starch-based amphoteric superabsorbent hydrogel with quaternary ammonium and carboxyl groups (II), Journal of Applied Polymer Science, 101 (2006) 1995-1999.
[17] C. Chang, B. Duan, J. Cai, L. Zhang, Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery, European Polymer Journal, 46 (2010) 92-100.
[18] A. Pourjavadi, H. Salimi, New Protein-Based Hydrogel with Superabsorbing Properties: Effect of Monomer Ratio on Swelling Behavior and Kinetics, Industrial & Engineering Chemistry Research, 47 (2008) 9206-9213.
[19] B. Qu, J.-r. Li, H.-n. Xiao, B.-h. He, L.-y. Qian, Preparation of Sodium carboxymethylcellulose/poly(methyl acrylate) IPN hydrogels and their application for adsorption, Journal of Applied Polymer Science, 131 (2014).
[20] Y. Zhao, H. Su, L. Fang, T. Tan, Superabsorbent hydrogels from poly(aspartic acid) with salt-, temperature- and pH-responsiveness properties, Polymer, 46 (2005) 5368-5376.
[21] D. Pasqui, M.D. Cagna, R. Barbucci, Polysaccharide-Based Hydrogels: The Key Role of Water in Affecting Mechanical Properties, 2012.
[22] H. El-Hamshary, Synthesis and water sorption studies of pH sensitive poly(acrylamide-co-itaconic acid) hydrogels, European Polymer Journal, 43 (2007) 4830-4838.
[23] A.Y. Kwok, G.G. Qiao, D.H. Solomon, Synthetic hydrogels. 1. Effects of solvent on poly(acrylamide) networks, Polymer, 44 (2003) 6195-6203.
[24] A. Li, J. Zhang, A. Wang, Synthesis, characterization and water absorbency properties of poly(acrylic acid)/sodium humate superabsorbent composite, Polymers for Advanced Technologies, 16 (2005) 675-680.
[25] E. Karadağ, T. Kırıştı, S. Kundakcı, Ö.B. Üzüm, Investigation of sorption/swelling characteristics of chemically crosslinked AAm/SMA hydrogels as biopotential sorbent, Journal of Applied Polymer Science, 117 (2010) 1787-1797.
[26] Y.M. Mohan, T. Premkumar, D.K. Joseph, K.E. Geckeler, Stimuli-responsive poly(N-isopropylacrylamide-co-sodium acrylate) hydrogels: A swelling study in surfactant and polymer solutions, Reactive and Functional Polymers, 67 (2007) 844-858.
[27] J. Wei, S. Xu, R. Wu, J. Wang, Y. Gao, Synthesis and characteristics of an amphoteric semi-IPN hydrogel composed of acrylic acid and poly(diallydimethylammonium chloride), Journal of Applied Polymer Science, 103 (2007) 345-350.
[28] S. Xu, R. Wu, X. Huang, L. Cao, J. Wang, Effect of the anionic-group/cationic-group ratio on the swelling behavior and controlled release of agrochemicals of the amphoteric, superabsorbent polymer poly(acrylic acid-co-diallyldimethylammonium chloride), Journal of Applied Polymer Science, 102 (2006) 986-991.
[29] R. Changerath, P.D. Nair, S. Mathew, C.P. Nair, Poly(methyl methacrylate)-grafted chitosan microspheres for controlled release of ampicillin, Journal of biomedical materials research. Part B, Applied biomaterials, 89 (2009) 65-76.
[30] A. Li, A. Wang, J. Chen, Studies on poly(acrylic acid)/attapulgite superabsorbent composites. II. Swelling behaviors of superabsorbent composites in saline solutions and hydrophilic solvent–water mixtures, Journal of Applied Polymer Science, 94 (2004) 1869-1876.
[31] Y. Zheng, P. Li, J. Zhang, A. Wang, Study on superabsorbent composite XVI. Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites, European Polymer Journal, 43 (2007) 1691-1698.
[32] M. Irani, H. Ismail, Z. Ahmad, Hydrogel composites based on linear low-density polyethylene-g-poly (acrylic acid)/Kaolin or halloysite nanotubes, Journal of Applied Polymer Science, 131 (2014).
[33] J. Lin, J. Wu, Z. Yang, M. Pu, Synthesis and Properties of Poly(acrylic acid)/Mica Superabsorbent Nanocomposite, Macromolecular Rapid Communications, 22 (2001) 422-424.
[34] L. Zheng, S. Xu, Y. Peng, J. Wang, G. Peng, Preparation and swelling behavior of amphoteric superabsorbent composite with semi-IPN composed of poly(acrylic acid)/Ca-bentonite/poly(dimethyldiallylammonium chloride), Polymers for Advanced Technologies, 18 (2007) 194-199.
[35] H. Gharekhani, A. Olad, A. Mirmohseni, A. Bybordi, Superabsorbent hydrogel made of NaAlg-g-poly(AA-co-AAm) and rice husk ash: Synthesis, characterization, and swelling kinetic studies, Carbohydrate Polymers, 168 (2017) 1-13.
[36] Y. Bao, J. Ma, N. Li, Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel, Carbohydrate Polymers, 84 (2011) 76-82.
[37] X. Su, G. Zhang, K. Xu, J. Wang, C. Song, P. Wang, The Effect of MMT/Modified MMT on the Structure and Performance of the Superabsorbent Composite, Polymer Bulletin, 60 (2008) 69-78.
[38] F.H.A. Rodrigues, A.G.B. Pereira, A.R. Fajardo, E.C. Muniz, Synthesis and characterization of chitosan-graft-poly(acrylic acid)/nontronite hydrogel composites based on a design of experiments, Journal of Applied Polymer Science, 128 (2013) 3480-3489.
[39] Condensed silica fume in concrete.
[40] A. Godman, A. Bentur, Bond Effects in High-Strength Silica Fume Concretes, ACI Materials Journal, 86.
[41] W.-T. Lin, R. Huang, C.L. Lee, H.M. Hsu, Effect of steel fiber on the mechanical properties of cement-based composites containing silica fume, Journal of Marine Science and Technology, 16 (2008) 214-221.
[42] T.J. Zhao, Z.H. Zhou, J.Q. Zhu, N.Q. Feng, An Alternating Test Method for Concrete Permeability 11Communicated by D.M. Roy, Cement and Concrete Research, 28 (1998) 7-12.
[43] M.G. Alexander, B.J. Magee, Durability performance of concrete containing condensed silica fume, Cement and Concrete Research, 29 (1999) 917-922.
[44] 工業化學概論, 五洲1999.
[45] C. Jolicoeur, M.-A. Simard, Chemical admixture-cement interactions: Phenomenology and physico-chemical concepts, Cement and Concrete Composites, 20 (1998) 87-101.
[46] S. Hanehara, K. Yamada, Interaction between cement and chemical admixture from the point of cement hydration, absorption behaviour of admixture, and paste rheology, Cement and Concrete Research, 29 (1999) 1159-1165.
[47] P. Lura, O.M. Jensen, K. van Breugel, Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms, Cement and Concrete Research, 33 (2003) 223-232.
[48] K. Kovler, S. Zhutovsky, Overview and Future Trends of Shrinkage Research, Materials and Structures, 39 (2006) 827.
[49] E. Holt, Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages, Cement and Concrete Research, 35 (2005) 464-472.
[50] R. Henkensiefken, D. Bentz, T. Nantung, J. Weiss, Volume change and cracking in internally cured mixtures made with saturated lightweight aggregate under sealed and unsealed conditions, Cement and Concrete Composites, 31 (2009) 427-437.
[51] B. Han, L. Zhang, J. Ou, Smart and Multifunctional Concrete Toward Sustainable Infrastructures, 2017.
[52] C.Y. Rha, C.E. Kim, C.S. Lee, K.I. Kim, S.K. Lee, Preparation and characterization of absorbent polymer-cement composites, Cement and Concrete Research, 29 (1999) 231-236.
[53] O.M. Jensen, P. Lura, Techniques and materials for internal water curing of concrete, Materials and Structures, 39 (2006) 817-825.
[54] D. Shen, T. Wang, Y. Chen, M. Wang, G. Jiang, Effect of internal curing with super absorbent polymers on the relative humidity of early-age concrete, Construction and Building Materials, 99 (2015) 246-253.
[55] A. Assmann, H.W. Reinhardt, Tensile creep and shrinkage of SAP modified concrete, Cement and Concrete Research, 58 (2014) 179–185.
[56] H. Beushausen, M. Gillmer, M. Alexander, The influence of superabsorbent polymers on strength and durability properties of blended cement mortars, Cement and Concrete Composites, 52 (2014) 73-80.
[57] V. Mechtcherine, E. Secrieru, C. Schröfl, Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars — Development of yield stress and plastic viscosity over time, Cement and Concrete Research, 67 (2015) 52-65.
[58] H.X.D. Lee, H.S. Wong, N.R. Buenfeld, Self-sealing of cracks in concrete using superabsorbent polymers, Cement and Concrete Research, 79 (2016) 194-208.
[59] Z.C. Grasley, D.A. Lange, Thermal dilation and internal relative humidity of hardened cement paste, Materials and Structures, 40 (2007) 311-317.
[60] W. Wang, Y. Kang, A. Wang, Synthesis, characterization and swelling properties of guar gum-g-poly(sodium acrylate-co-styrene)/muscovite superabsorbent composites, Science and Technology of Advanced Materials, 11 (2010) 025006.
[61] X.-P. Chen, G.-R. Shan, J. Huang, Z.-M. Huang, Z.-X. Weng, Synthesis and Properties of Acrylic-Based Superabsorbent, Journal of Applied Polymer Science - J APPL POLYM SCI, 92 (2004) 619-624.
[62] A. Pourjavadi, A.M. Harzandi, H. Hosseinzadeh, Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air, European Polymer Journal, 40 (2004) 1363-1370.
[63] A. Li, A. Wang, Synthesis and properties of clay-based superabsorbent composite, European Polymer Journal, 41 (2005) 1630-1637.
[64] H.X.D. Lee, H.S. Wong, N.R. Buenfeld, Potential of superabsorbent polymer for self-sealing cracks in concrete, Advances in Applied Ceramics, 109 (2010) 296-302.