研究生: |
鄭喬芹 Cheng, Chiao-Chin |
---|---|
論文名稱: |
探討建模歷程在國小新舊課綱自然教科書之運用 Investigating the Application of Modeling Process in Primary School Science Textbooks |
指導教授: |
邱美虹
Chiu, Mei-Hung 顏妙璇 Yen, Miao-Hsuan |
口試委員: |
林靜雯
Lin, Jing-Wen 顏妙璇 Yen, Miao-Hsuan 邱美虹 Chiu, Mei-Hung |
口試日期: | 2023/03/27 |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 建模歷程 、國小教科書 、教科書分析 |
英文關鍵詞: | Modeling Processes, Primary School Textbooks, Textbook Analysis |
研究方法: | 內容分析法 |
DOI URL: | http://doi.org/10.6345/NTNU202300531 |
論文種類: | 學術論文 |
相關次數: | 點閱:127 下載:23 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著新108課綱的實施,素養導向的科學教學內容強調教室教學應培養學生探究之能力,其中新增加的兩項素養分別是建立模型與論證。本研究藉由內容分析法以達成兩個研究目的,一個為探討新舊課綱在國小自然教科書中使用建模歷程的頻率,另一個為探討新舊課綱在國小自然教科書建模歷程課程設計的排序。本研究選定現行國小三年級所使用的三個版本,九年一貫課綱(出版年份2020年)及108新課綱(出版年份2021年及2022年)教科書為研究對象,共十二冊。本研究建立建模歷程(以下簡稱建模)在教科書中使用之詞彙編碼表,對新舊教科書進行詞彙及語意分析,以探討在舊課綱及新課綱實施後,其建模融入教科書之情形。本研究結果顯示:1. 同一版本教科書整體及不同單元於新課綱使用建模的頻率皆明顯較舊課綱多,顯示課綱轉變後,教材也隨之進行編修使其著重在探究能力之培養。2. 同一版本教科書在不同單元運用建模的頻率,其中以奇妙的水最多,動物概念最少,顯示在奇妙的水概念需更多建模之輔助以幫助學生建構知識。3. 三個版本教科書大多數著重在模型發展、模型精緻化及模型遷移階段,使用模型重建階段比例極低,顯示在國小教科書仍有運用到較高層次之建模,但相較低層次建模的比例來說還是較為少見。4. 三個版本教科書於不同單元中僅模型遷移在奇妙的水單元運用最多,模型發展、模型精緻化及模型重建階段皆無較常運用之單元,顯示在不同單元在使用建模上較無固定模式。5. 同一版本教科書整體課程排序並非按照建模順序做內容設計,顯示教科書在運用建模上較為不熟悉,使得各版本在新舊課綱中多數單元並非由模型選擇步驟開始到模型轉換結束。6. 三個版本教科書整體及不同單元在舊課綱皆為單一模型,新課綱為多個模型但建模順序較不完整及不同模型穿插在其中,並新增循環建模步驟,顯示課程排序在課綱調整後,教科書利用循環以強調建模的使用並提供學生建模的機會。以上研究結果將提供給教師、出版商及未來研究者在建模融入教科書時進行參考。
With the implementation of the New Curriculum Guidelines, competence-oriented science teaching content emphasizes on cultivating students' inquiry ability. Among the inquiry ability, constructing models and argumentation are the two new competences to be highlighted. This study uses content analysis to achieve two research purposes, one is to investigate the frequencies of the use of new and old curriculum guidelines in primary school natural science textbooks, and the other is to investigate modeling processes of the new and old curriculum in primary school natural science textbooks sequencing of curriculum design. The author selected 12 primary school textbooks for the third graders, based on the Grade 1-9 Curriculum Standards (publication years in 2020) and the 12-Year Basic Education Curriculum Guidelines (publication years in 2021 and 2022) as the research object. This study adopts the modeling processes (referred to as modeling) to analyze the vocabularies and semantics of textbooks and investigates the use of modeling in textbooks during different curriculum reforms. The results of this study show: 1. The frequency of using modeling in the new curriculum as a whole and in different units of the same version of the textbook is significantly higher than that in the old curriculum. 2. The frequency of using modeling in different units of the same version of the textbook, among which the topic of Wonderful Water is the most, and the topic of Animals is the least. It shows that the topic of Wonderful Water needs more modeling assistance to help students construct knowledge of water. 3. Most of the textbooks in the three versions focus on the stages of model development, model elaboration, and model application. The proportion of model reconstruction stages is very low, indicating that elementary school textbooks still use high-level modeling, but compared with lower-level modeling relatively rare. 4. In the different units of the three versions of the textbook, only the model application is used most in the Wonderful Water unit, and there are no more commonly used units in the model development, model elaboration, and model reconstruction stages, which shows that the use of modeling in different units is a less fixed pattern. 5. The overall course sequencing of the same version of the textbook is not designed according to the modeling sequencing, which shows that the textbook writers are not familiar with the modeling application so that most units in the new and old curriculum of each version do not start from the model selection step to the end of the model transformation. 6. The three versions of the textbook as whole and different units are all a single model in the old curriculum, but the new curriculum is a multi-model modeling sequence, it is not complete and different models are interspersed in it, and a new cycle of modeling steps is added, showing textbooks utilize cycles to emphasize the use of modeling and provide opportunities for students modeling.
中文文獻
王美芬(主編)(2020).國民小學自然科學課本(第一冊三年級上學期).臺北市:康軒文教。
王美芬(主編)(2020).國民小學自然科學課本(第二冊三年級下學期).臺北市:康軒文教。
王美芬(主編)(2021).國民小學自然科學課本(第一冊三年級上學期).臺北市:康軒文教。
王美芬(主編)(2022).國民小學自然科學課本(第二冊三年級下學期).臺北市:康軒文教。
邱美虹(2016).科學模型、科學建模與建模能力.台灣化學教育,11。http://chemed.chemistry.org.tw/?p=13898
國家教育研究院(2008年9月).國民中小學九年一貫課程綱要自然與生活科技學習領域。https://cirn.moe.edu.tw/Upload/file/722/67284.pdf
國家教育研究院(2018年11月2日).十二年國民基本教育課程綱要—國民中小學暨普通型高級中等學校:自然科學領域。https://cirn.moe.edu.tw/Upload/file/27883/82357.pdf
陳秋民(主編)(2020).國民小學自然科學課本(第一冊三年級上學期).臺南市:翰林出版。
陳秋民(主編)(2020).國民小學自然科學課本(第二冊三年級下學期).臺南市:翰林出版。
陳秋民(主編)(2021).國民小學自然科學課本(第一冊三年級上學期).臺南市:翰林出版。
陳秋民(主編)(2022).國民小學自然科學課本(第二冊三年級下學期).臺南市:翰林出版。
黃鴻博(主編)(2020).國民小學自然科學課本(第一冊三年級上學期).臺南市:南一書局。
黃鴻博(主編)(2020).國民小學自然科學課本(第二冊三年級下學期).臺南市:南一書局。
劉俊庚、邱美虹(2010).從建模觀點分析高中化學教科書中原子理論之建模歷程及其意涵.科學教育研究與發展季刊,59,23-53。
盧秀琴(主編)(2021).國民小學自然科學課本(第一冊三年級上學期).臺南市:南一書局。
盧秀琴(主編)(2022).國民小學自然科學課本(第二冊三年級下學期).臺南市:南一書局。
鐘建坪(2021).以科學建模歷程探索臺灣國中教科書中化學平衡概念模型的建構.教科書研究,14(1),31-56。
英文文獻
Baek, H., Schwarz, C., Chen, J., Hokayem, H., & Zhan, L. (2011). Engaging elementary students in scientific modeling: The MoDeLS fifth-grade approach and findings. In Khine, M., Saleh, I. (eds), Models and modeling: Cognitive tools for scientific enquiry, 195-218.
Bailer-Jones, D. M. (2002). Scientists' thoughts on scientific models. Perspectives on Science, 10(3), 275-301.
Bergqvist, A., Drechsler, M., De Jong, O., & Rundgren, S. N. C. (2013). Representations of chemical bonding models in school textbooks–help or hindrance for understanding?. Chemistry Education Research and Practice, 14(4), 589-606.
Böschl, F., Forbes, C., & Lange-Schubert, K. (2022). Investigating scientific modeling practices in U.S. and German elementary science classrooms: A comparative, cross-national video study. Science Education, 107, 368– 400.
Campbell, T., Oh, P. S., Maughn, M., Kiriazis, N., & Zuwallack, R. (2015). A review of modeling pedagogies: Pedagogical functions, discursive acts, and technology in modeling instruction. Eurasia Journal of Mathematics, Science and Technology Education, 11(1), 159-176.
Chiu, M. H., & Lin, J. W. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research, 1(1), 1-11.
Devetak, I., & Vogrinc, J. (2013). The criteria for evaluating the quality of the science textbooks. In M. S. Khine (Ed.), Critical analysis of Science textbooks, 3-15.
Erduran, S. (1996). Analysis of physical science textbooks for conceptual frameworks on acids, bases and neutralization: Implications for students’ conceptual understanding. Paper presented at the Annual Meeting of the American Educational Research Association, New York.
Forbes, C.T., Lange-Schubert, K., Böschl, F., Vo, T. (2019). Supporting Primary Students’ Developing Modeling Competence for Water Systems. In Upmeier zu Belzen, A., Krüger, D., van Driel, J. (eds), Towards a Competence-Based View on Models and Modeling in Science Education. Models and Modeling in Science Education, vol 12. Springer, Cham.
Gericke, N. M., & Hagberg, M. (2010). Conceptual incoherence as a result of the use of multiple historical models in school textbooks. Research in Science Education, 40(4), 605-623.
Gericke, N., Hagberg, M., & Jorde, D. (2013). Upper secondary students’ understanding of the use of multiple models in biology textbooks—The importance of conceptual variation and incommensurability. Research in Science Education, 43(2), 755-780.
Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822.
Grünkorn, J., zu Belzen, A. U., & Krüger, D. (2014). Assessing students' understandings of biological models and their use in science to evaluate a theoretical framework. International Journal of Science Education, 36(10), 1651-1684.
Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 33(9), 1019-1041.
Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026.
Hokayem, H., & Schwarz, C. (2014). Engaging fifth graders in scientific modeling to learn about evaporation and condensation. International Journal of Science and Mathematics Education, 12, 49-72.
Jong, J. P., Chiu, M. H., & Chung, S. L. (2015). The use of modeling‐based text to improve students' modeling competencies. Science education, 99(5), 986-1018.
Ke, L., Sadler, T. D., Zangori, L., & Friedrichsen, P. J. (2021). Developing and using multiple models to promote scientific literacy in the context of socio-scientific issues. Science Education, 30(3), 589-607.
Krell, M., Reinisch, B., & Krüger, D. (2015). Analyzing students’ understanding of models and modeling referring to the disciplines biology, chemistry, and physics. Research in Science Education, 45(3), 367-393.
Lee, Y. J., & Wan, D. (2022). Disciplinary emphasis and coherence of integrated science textbooks: a case study from mainland China. International Journal of Science Education, 44(1), 156-177.
Penner, D. E. (2000). Chapter 1: cognition, computers, and synthetic science: building knowledge and meaning through modeling. Review of research in education, 25(1), 1-35.
Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling. Cognition and instruction, 23(2), 165-205.
Schwarz, C. V., Ke, L., Salgado, M., & Manz, E. (2022). Beyond assessing knowledge about models and modeling: Moving toward expansive, meaningful, and equitable modeling practice. Journal of Research in Science Teaching.
Schwarz, C. V., Passmore, C., & Reiser, B. J. (2017). Helping students make sense of the world using next generation science and engineering practices. NSTA Press.
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654.
Sins, P. H., Savelsbergh, E. R., & van Joolingen, W. R. (2005). The Difficult Process of Scientific Modelling: An analysis of novices' reasoning during computer‐based modelling. International Journal of Science Education, 27(14), 1695-1721.
Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368.
Vo, T., Forbes, C. T., Zangori, L., & Schwarz, C. V. (2015). Fostering third-grade students’ use of scientific models with the water cycle: Elementary teachers’ conceptions and practices. International Journal of Science Education, 37(15), 2411-2432.
Vojíř, K., & Rusek, M. (2019). Science education textbook research trends: A systematic literature review. International Journal of Science Education, 41(11), 1496-1516.
Wan, D., & Lee, Y. J. (2021). Coherence of topics from middle-school integrated science textbooks from Taiwan and Korea. International Journal of Science and Mathematics Education, 20(5), 881-899.
Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model‐based inquiry as a new paradigm of preference for school science investigations. Science education, 92(5), 941-967.