簡易檢索 / 詳目顯示

研究生: 李彩鳳
Ly, The-Phung
論文名稱: 鷹架策略與提示策略對不同先備知識國中生程式設計課程學習成效與動機之探討
Effects of Scaffolding, Prompting and Prior Knowledge on Junior High Students’ Programming Learning
指導教授: 陳明溥
Chen, Ming-Puu
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 124
中文關鍵詞: 鷹架策略提示策略先備知識程式設計機器人
英文關鍵詞: scaffloding, prompting, prior knowledge, programming, robot
DOI URL: http://doi.org/10.6345/THE.NTNU.GICE.010.2018.F02
論文種類: 學術論文
相關次數: 點閱:295下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為探討鷹架策略與提示策略對不同先備知識國中八年級學習者在擴增實境學習環境中的程式設計學習成效與學習動機之影響。本研究採因子設計之準實驗研究,有效樣本134人。自變項為「鷹架策略」、「提示策略」與「先備知識」;「鷹架策略」分為概念鷹架及程序鷹架,「提示策略」分為影片提示及圖像提示,「先備知識」分為高先備知識與低先備知識。依變項為「程式設計學習成效」與「程式設計學習動機」;「程式設計學習成效」分為知識理解及知識應用,「程式設計學習動機」分為價值成分及期望成分兩個面向。
    研究結果顯示:在學習成效方面,(1)就知識理解而言,高先備知識學習者表現優於低先備知識學習者,鷹架策略與提示策略各組學習者的知識理解表現無顯著差異;(2)就知識應用而言,鷹架策略與提示策略二維交互作用達顯著水準,在接受程序鷹架策略時,觀看影片提示學習者表現顯著優於圖像提示學習者;在觀看圖像提示時,接受概念鷹架的學習者表現顯著優於程序鷹架學習者;高先備知識學習者表現優於低先備知識學習者。在學習動機方面,(3)各實驗組學習者對學習活動皆抱持正向動機表現;其中,接受概念鷹架的學習者在學習動機價值成分(內在目標面向、工作價值面向)與期望成分(控制信念面向)顯著優於程序鷹架的學習者。

    The purpose of this study was to investigate the effects of scaffolding, prompting and prior knowledge on junior high students’ programming learning performance and motivation. A quasi-experimental design was employed and a total of 134 eighth graders participated in the experimental activity. The independent variables included types of scaffolding (concept scaffolding vs. procedure scaffolding), prompting (video prompting vs. picture prompting), and prior knowledge (high vs. low). The dependent variables were students’ learning performance and motivation.
    The results revealed that: (a) for the comprehension performance, the high prior knowledge group outperformed the low prior knowledge group; (b) for the application performance, the interaction between scaffolding and prompting is significant, the video prompting group outperformed picture prompting group while receiving procedure scaffolding; and the concept scaffolding group outperformed procedure scaffolding group while using picture prompting; the high prior knowledge group outperformed the low prior knowledge group; and (c) all participants showed positive motivation toward programming learning, and particularly, the concept scaffolding group showed higher degree of motivation than the procedure scaffolding group did.

    附表目錄 vi 附圖目錄 vii 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 3 第三節 研究範圍與限制 4 第四節 重要名詞釋義 6 第二章 文獻探討 9 第一節 程式設計學習 9 第二節 鷹架策略 14 第三節 提示策略 17 第四節 體驗式學習 19 第五節 擴增實境 22 第三章 研究方法 25 第一節 研究對象 25 第二節 研究設計 27 第三節 實驗流程 33 第四節 研究工具 35 第五節 資料處理與分析 38 第四章 研究結果與討論 39 第一節 程式設計學習成效分析 39 第二節 程式設計學習動機分析 45 第五章 結論與建議 55 第一節 結論 55 第二節 建議 58 參考文獻 61 附錄 67 附錄一 概念圖像組學習單 68 附錄二 概念影片組學習單 80 附錄三 程序圖像組學習單 92 附錄四 程序影片組學習單 104 附錄五 程式設計測驗卷 116 附錄六 程式設計學習動機量表 122

    一、中文文獻
    呂郁欣(2017)。引導策略與學習順序對國小機器人程式設計學習成效及態度之影響(未出版碩士論文)。國立臺灣師範大學,臺北市。
    張曉瑀(2018)。目標設定與引導策略對不同先備知識國中生以智慧眼鏡輔助機器人程式設計學習之成效及動機探討(未出版碩士論文)。國立臺灣師範大學,臺北市。
    教育部(2016)。教育部2016-2020資訊教育總藍圖。臺北市:教育部。

    二、英文文獻
    Abdulwahed, M. & Nagy, Z. K. (2009). Applying Kolb's experiential learning cycle for laboratory education. Journal of Engineering Education, 98(3), 283-294.
    Akçayır, M. & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1-11.
    Alimisis, D. (2013). Educational robotics: Open questions and new challenges. Themes in Science and Technology Education, 6(1), 63-71.
    Altin, H. & Pedaste, M. (2013). Learning approaches to applying robotics in science education. Journal of Baltic Science Education, 12(3), 365-377.
    Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6(4), 355-385.
    Bacca, J., Baldiris, S., Fabregat, R., Graf, S. & Kinshuck. (2014). Augmented reality trends in education: A systematic review of research and applications. Journal of Educational Technology & Society, 17(4), 133-149.
    Bal, E. & Bicen, H. (2016). Computer hardware course application through augmented reality and QR code integration: Achievement levels and views of students. Procedia Computer Science, 102, 267-272.
    Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978-988.
    Bower, M., Howe, C., McCredie, N., Robinson, A. & Grover, D. (2014). Augmented reality in education - cases, places and potentials. Educational Media International, 51(1), 1-15.
    Bronack, S. C. (2011). The role of immersive media in online education. The Journal of Continuing Higher Education, 59(2), 113-117.
    Brotherstone, H., Miles, A., Robb, K. A., Atkin, W. & Wardle, J. (2006). The impact of illustrations on public understanding of the aim of cancer screening. Patient Education and Counseling, 63(3), 328-335.
    Burnett, M. M. & Ambler, A. L. (1994). Interactive visual data abstraction in a declarative visual programming language. Journal of Visual Languages & Computing, 5(1), 29-60.
    Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E. & Ivkovic, M. (2010). Augmented reality technologies, systems and applications. Multimedia Tools and Applications, 51(1), 341-377.
    Coimbra, M. T., Cardoso, T. & Mateus, A. (2015). Augmented reality: An enhancer for higher education students in math's learning? Procedia Computer Science, 67, 332-339.
    Cook, M. (2008). Students’ comprehension of science concepts depicted in textbook illustrations. Electronic Journal of Science Education, 12(1), 39-54.
    Corbett, A. C. (2005). Experiential learning within the process of opportunity identification and exploitation. Entrepreneurship Theory and Practice, 29(4), 473-491.
    Deejring, K. (2015). The validation of web-based learning using collaborative learning techniques and a scaffolding system to enhance learners’ competency in higher education. Procedia - Social and Behavioral Sciences, 174, 34-42.
    Del Bosque, L., Martinez, R. & Torres, J. L. (2015). Decreasing failure in programming subject with augmented reality tool. Procedia Computer Science, 75, 221-225.
    Di Serio, Á., Ibáñez, M. B. & Kloos, C. D. (2013). Impact of an augmented reality system on students' motivation for a visual art course. Computers & Education, 68, 586-596.
    Diaz, C., Hincapié, M. & Moreno, G. (2015). How the type of content in educative augmented reality application affects the learning experience. Procedia Computer Science, 75, 205-212.
    Dieleman, H. & Huisingh, D. (2006). Games by which to learn and teach about sustainable development: Exploring the relevance of games and experiential learning for sustainability. Journal of Cleaner Production, 14(9-11), 837-847.
    Ding, L., Reay, N. W., Heckler, A. & Bao, L. (2010). Sustained effects of solving conceptually scaffolded synthesis problems. Paper presented at the AIP Conference Proceedings.
    Fowler, J. (2008). Experiential learning and its facilitation. Nurse Education Today, 28(4), 427-433.
    Goh, H. & Ali, M. B. B. (2014). Robotics as a tool to STEM learning. International Journal for Innovation Education and Research, 2(10), 66-78.
    Gomes, A. & Mendes, A. J. (2007). Learning to program-difficulties and solutions. Paper presented at the International Conference on Engineering Education.
    Grobe, C. S., Jungmann, L. & Drechsler, R. (2015). Benefits of illustrations and videos for technical documentations. Computers in Human Behavior, 45, 109-120.
    Höffler, T. N. & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, 17(6), 722-738.
    Hamer, L. O. (2000). The additive effects of semistructured classroom activities on student learning: An application of classroom-based experiential learning techniques. Journal of Marketing Education, 22(1), 25-34.
    Hegarty, M. (2004). Dynamic visualizations and learning: Getting to the difficult questions. Learning and Instruction, 14(3), 343-351.
    Hill, J. R. & Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of resource-based learning. Educational Technology Research and Development, 49(3), 37-52.
    Hussain, S., Lindh, J. & Shukur, G. (2006). The effect of LEGO training on pupils' school performance in mathematics, problem solving ability and attitude: Swedish data. Journal of Educational Technology & Society, 9(3), 182-194.
    Kühl, T., Scheiter, K., Gerjets, P. & Gemballa, S. (2011). Can differences in learning strategies explain the benefits of learning from static and dynamic visualizations? Computers & Education, 56(1), 176-187.
    Kerawalla, L., Luckin, R., Seljeflot, S. & Woolard, A. (2006). “Making it real”: Exploring the potential of augmented reality for teaching primary school science. Virtual Reality, 10(3-4), 163-174.
    Khaliliaqdam, S. (2014). ZPD, scaffolding and basic speech development in EFL context. Procedia - Social and Behavioral Sciences, 98, 891-897.
    Kiili, K. (2005). Digital game-based learning: Towards an experiential gaming model. The Internet and Higher Education, 8(1), 13-24.
    Kim, M. C. & Hannafin, M. J. (2011). Scaffolding problem solving in technology-enhanced learning environments (TELEs): Bridging research and theory with practice. Computers & Education, 56(2), 403-417.
    Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs, NJ: Prentice Hall.
    Kolb, D. A. (2000). The process of experiential learning. Paper presented at the Strategic Learning in a Knowledge Economy.
    Kools, M., van de Wiel, M. W., Ruiter, R. A. & Kok, G. (2006). Pictures and text in instructions for medical devices: Effects on recall and actual performance. Patient Education and Counseling, 64(1), 104-111.
    Kose, U., Koc, D. & Yucesoy, S. A. (2013). An augmented reality based mobile software to support learning experiences in computer science courses. Procedia Computer Science, 25, 370-374.
    Kucuk, S., & Sisman, B. (2017). Behavioral patterns of elementary students and teachers in one-to-one robotics instruction. Computers & Education, 111, 31-43.
    Lahtinen, E., Ala-Mutka, K. & Järvinen, H. M. (2005). A study of the difficulties of novice programmers. ACM SIGCSE Bulletin, 37(3), 14-18.
    Lee, K. (2012). Augmented reality in education and training. TechTrends, 56(2), 13-21.
    Lewalter, D. (2003). Cognitive strategies for learning from static and dynamic visuals. Learning and Instruction, 13(2), 177-189.
    Lewis, L. H. & Williams, C. J. (1994). Experiential learning: Past and present. New Directions for Adult and Continuing Education, 1994(62), 5-16.
    Maier, P., Tönnis, M. & Klinker, G. (2009). Dynamics in tangible chemical reactions. Paper presented at the International Conference on Chemical Engineering (ICCE 2009).
    Maloney, J., Resnick, M., Rusk, N., Silverman, B. & Eastmond, E. (2010). The Scratch programming language and environment. ACM Transactions on Computing Education, 10(4), 1-15.
    Martín-Gutiérrez, J., Contero, M. & Alcañiz, M. (2015). Augmented reality to training spatial skills. Procedia Computer Science, 77, 33-39.
    Mayer, R. E. (1999). Multimedia aids to problem-solving transfer. International Journal of Educational Research, 31(7), 611-623.
    Mayer, R. E. & Moreno, R. (2002). Animation as an aid to multimedia learning. Educational Psychology Review, 14(1), 87-99.
    Milgram, P. & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329.
    Ouahbi, I., Kaddari, F., Darhmaoui, H., Elachqar, A. & Lahmine, S. (2015). Learning basic programming concepts by creating games with Scratch programming environment. Procedia - Social and Behavioral Sciences, 191, 1479-1482.
    Pintrich, P. R., Smith, D. A. F., Garcia, T. & McKeachie, W. J. (1991). A Manual for the use of the motivated strategies for learning questionnaire (MSLQ).
    Radu, I. (2012). Why should my students use AR? A comparative review of the educational impacts of augmented-reality. Paper presented at the 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).
    Raes, A., Schellens, T., De Wever, B. & Vanderhoven, E. (2012). Scaffolding information problem solving in web-based collaborative inquiry learning. Computers & Education, 59(1), 82-94.
    Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. Journal of the Learning Sciences, 13(3), 273-304.
    Robins, A., Rountree, J. & Rountree, N. (2003). Learning and teaching programming: A review and discussion. Computer Science Education, 13(2), 137-172.
    Sartatzemi, M., Dagdilelis, V. & Kagani, K. (2005). Teaching programming with robots: A case study on Greek secondary education. Paper presented at the Panhellenic Conference on Informatics, Springer, Berlin, Heidelberg.
    Sharma, P. & Hannafin, M. J. (2007). Scaffolding in technology-enhanced learning environments. Interactive Learning Environments, 15(1), 27-46.
    Sáez-López, J.-M., Román-González, M. & Vázquez-Cano, E. (2016). Visual programming languages integrated across the curriculum in elementary school: A two year case study using “Scratch” in five schools. Computers & Education, 97, 129-141.
    Tiantong, M. & Teemuangsai, S. (2013). The four scaffolding modules for collaborative problem-based learning through the computer network on Moodle LMS for the computer programming course. International Education Studies, 6(5).
    Tu, J.-J. & Johnson, J. R. (1990). Can computer programming improve problem solving ability? ACM SIGCSE Bulletin, 22(2), 30-33.
    Tversky, B., Morrison, J. B. & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57(4), 247-262.
    van der Meij, H. (2017). Reviews in instructional video. Computers & Education, 114, 164-174.
    van der Meij, H. & van der Meij, J. (2014). A comparison of paper-based and video tutorials for software learning. Computers & Education, 78, 150-159.
    Vygotsky, L. (1978). Interaction between learning and development. Readings on the Development of Children, 23(3), 34-41.
    Wesiak, G., Steiner, C. M., Moore, A., Dagger, D., Power, G., Berthold, M., . . . Conlan, O. (2014). Iterative augmentation of a medical training simulator: Effects of affective metacognitive scaffolding. Computers & Education, 76, 13-29.
    Winslow, L. E. (1996). Programming pedagogy - a psychological overview. ACM SIGCSE Bulletin, 28(3), 17-22.
    Wood, D., Bruner, J. S. & Ross, G. (1976). The role of tutoring in problem solving. Journal of child psychology and psychiatry, 17(2), 89-100.
    Wood, D. & Wood, H. (2006). Vygotsky, tutoring and learning. Oxford Review of Education, 22(1), 5-16.
    Wu, H. L. & Pedersen, S. (2011). Integrating computer- and teacher-based scaffolds in science inquiry. Computers & Education, 57(4), 2352-2363.
    Yarden, H. & Yarden, A. (2009). Learning using dynamic and static visualizations: Students’ comprehension, prior knowledge and conceptual status of a biotechnological method. Research in Science Education, 40(3), 375-402.
    Zhang, D., Zhou, L., Briggs, R. O. & Nunamaker, J. F. (2006). Instructional video in e-learning: Assessing the impact of interactive video on learning effectiveness. Information & Management, 43(1), 15-27.
    Zydney, J. M. (2010). The effect of multiple scaffolding tools on students’ understanding, consideration of different perspectives, and misconceptions of a complex problem. Computers & Education, 54(2), 360-370.

    下載圖示
    QR CODE