研究生: |
翟永誠 Jair, Yung-Cheng |
---|---|
論文名稱: |
以固相萃取搭配氣相層析質譜法確認罕見遺傳代謝疾病病人之尿液有機酸 Determination of Urinary Organic Acid for Rare Inherited Metabolic Disease Patient Using Solid Phase Extraction and Gas Chromatography-Mass Spectrometry |
指導教授: |
劉沂欣
Liu, Yi-Hsin 陳珮珊 Chen, Pai-Shan 李妮鍾 Lee, Ni-Chung |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 固相萃取 、氣相層析質譜儀 、尿液有機酸 、定量 |
英文關鍵詞: | Solid Phase Extraction, Rare Inherited Metabolic Disease |
DOI URL: | http://doi.org/10.6345/NTNU202001517 |
論文種類: | 學術論文 |
相關次數: | 點閱:149 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
代謝是維持人體各項生理機能得以順利運作的基礎,透過比對正常人與患者代謝物種類、濃度的差異,可以作為醫師搭配臨床症狀進行診斷之參考,這也是近年代謝體學蓬勃發展的原因。在遺傳代謝疾病的領域,無法被代謝或異常代謝的產物會在患者體內大量堆積,然而患者在早期通常不會出現明顯臨床症狀,且症狀則與多種疾病雷同,容易造成誤診。如吞嚥困難、肌肉張力異常也是小兒腦性麻痺常見的臨床症狀,嗜睡、嘔吐、抽筋、餵食困難則常見於新生兒敗血症、雷氏症候群。是故尿液有機酸之定性與定量尤為重要,透過了解遺傳代謝疾病患者與正常人檢體中四十四種有機酸濃度的差異,可盡早確診疾病項目、開始治療。然而尿液中具有大量且複雜的基質,建立一套有效避免基質干擾、保留待測物,並能夠穩定分析的方法,才能成為輔助診斷的利器。一般研究使用液相萃取搭配液相或氣相層析質譜儀,然而經過比對後發現各篇研究所得的正常範圍歧異相當大,是由於液相萃取容易因操作人員之差異與該實驗方法專一性不足。是故,本研究借重自動固相萃取裝置之穩定性與方法之專一性,經最佳化之沖提條件及反應條件,可以提供建立尿液中四十四種有機酸快速與準確的分析方法,並建立正常範圍作為輔助診斷之依據。
Organic acidemia (OA) is a group of inborn error of metabolism that are caused by defects in that degradation of branched chain amino acids. Early symptoms are not specific for clinical diagnosis which leads misdiagnosis . Certain symptoms observed on organic acidemia are also found on other diseases, such as dysphagia and dystonia both symptoms of poliomyelitis. Or lethargy, vomiting and cramp which are common symptoms seen to neonatal septicemia and Reye's syndrome. Conventional method that is liquid-liquid extraction coupled to GC-MS generally applied semi-quantitation. This leads to great variation between analysis and thus results in great differential of results. To solve the issue, a sensitive and specific method for the qualitative and quantitative of relevant organic acids accumulated in newborn urine is important. Our aim is to set up a fast, high through-put and precise analytical method based on synthetic reference substance using auto-solid phase extraction couple to gas chromatography-mass spectrometry to provide accurate quantitation and qualification for clinical diagnosis of organic acidemia.
1.Vaidyanathan, K., M.P. Narayanan, and D.M. Vasudevan, Organic acidurias: an updated review. Indian J Clin Biochem, 2011. 26(4): p. 319-25.
2.Zschocke, J., Disorders of Intermediary Metabolism. 2017. p. 3-8.
3.Wajner, M., Neurological manifestations of organic acidurias. Nat Rev Neurol, 2019. 15(5): p. 253-271.
4.Shennar, H.K., et al., Diagnosis and clinical features of organic acidemias: A hospital-based study in a single center in Damascus, Syria. Qatar medical journal, 2015. 2015(1): p. 9-9.
5.Selim L, H.S., Salem F, Hassan F, El Mogy F, Abdel Atty S, Mandour I, Fathy M, El Orabi Amin A, Gamal El Din I, Sadek El Defrawy M, El Ayat A, El Badawy A, Yousry M, Abdel Monem M, Mehaney D., Screening for Organic Acid Disorders among Egyptian Children with Clinically Suspected Neurometabolic Disorders. Res J Medicine & Med., 2009. 4(2): p. 369–385.
6.Seymour, et al., Newborn screening for inborn errors of metabolism: a systematic review. Health Technology Assessment, 1997. 1(11).
7.Najafi, R., et al., Demographic and Clinical Findings in Pediatric Patients Affected by Organic Acidemia. Iranian journal of child neurology, 2016. 10(2): p. 74-81.
8.Narayanan, M.P., et al., Diagnosis of major organic acidurias in children: two years experience at a tertiary care centre. Indian J Clin Biochem, 2011. 26(4): p. 347-53.
9.Shibata, N., et al., Diversity in the incidence and spectrum of organic acidemias, fatty acid oxidation disorders, and amino acid disorders in Asian countries: Selective screening vs. expanded newborn screening. Mol Genet Metab Rep, 2018. 16: p. 5-10.
10.Leonard, J.V. and A.A. Morris, Diagnosis and early management of inborn errors of metabolism presenting around the time of birth. Acta Paediatr, 2006. 95(1): p. 6-14.
11.Martins, A.M., Inborn errors of metabolism: a clinical overview. Sao Paulo Medical Journal, 1999. 117: p. 251-265.
12.Hawkes, C.P., et al., Doctors' knowledge of the acute management of Inborn Errors of Metabolism. Acta Paediatr, 2011. 100(3): p. 461-3.
13.Mosleh, T., S.K. Dey, and M.A. Mannan, A Case of Organic Acidemia: Are Physicians Aware Enough? Euroasian journal of hepato-gastroenterology, 2016. 6(1): p. 89-90.
14.Zhu, M., The Guthrie Test for Early Diagnosis of Phenylketonuria, in Embryo Project Encyclopedia. 2017, Arizona State University. School of Life Sciences. Center for Biology and Society. Embryo Project Encyclopedia.
15. Coman, D. and K. Bhattacharya, Extended newborn screening: an update for the general paediatrician. J Paediatr Child Health, 2012. 48(2): p. E68-72.
16.Irw, H.R. Notricasin, and W. Fleming, BLOOD PHENYLALANINE LEVELS OF NEWBORN INFANTS. A ROUTINE SCREENING PROGRAM FOR THE HOSPITAL NEWBORN NURSERY. California medicine, 1964. 101(5): p. 331-333.
17.Partington, M.W. and B. Sinnott, CASE FINDING IN PHENYLKETONURIA. II. THE GUTHRIE TEST. Can Med Assoc J, 1964. 91(3): p. 105-14.
18.Blumenfeld, C.M., M.J. Wallace, and R. Anderson, Phenylketonuria-the guthrie screening test-a method of quantitation, observations on reliability and suggestions for improvement. California medicine, 1966. 105(6): p. 429-434.
19.Christou, C., et al., GC-MS analysis of organic acids in human urine in clinical settings: a study of derivatization and other analytical parameters. J Chromatogr B Analyt Technol Biomed Life Sci, 2014. 964: p. 195-201.
20.Faupel-Badger, J.M., et al., Comparison of Liquid Chromatography-Tandem Mass Spectrometry, RIA, and ELISA Methods for Measurement of Urinary Estrogens. Cancer Epidemiology Biomarkers & Prevention, 2010. 19(1): p. 292.
21.Weismann, D., et al., Measurements of plasma metanephrines by immunoassay vs liquid chromatography with tandem mass spectrometry for diagnosis of pheochromocytoma. Eur J Endocrinol, 2015. 172(3): p. 251-60.
22.Pourfarzam, M. and F. Zadhoush, Newborn Screening for inherited metabolic disorders; news and views. Journal of Research in Medical Sciences : The Official Journal of Isfahan University of Medical Sciences, 2013. 18(9): p. 801-808.
23.Keyfi, F., Z. Lukacs, and A. Varasteh, A Description of Reference Ranges for Organic Acids in Urine Samples from A Pediatric Population in Iran. Reports of biochemistry & molecular biology, 2017. 6(1): p. 40-50.
24.Hoffmann, G. and P. Feyh, Organic Acid Analysis. 2003. p. 27-44.
25.Blau, N., et al., Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases. 2014: Springer Berlin Heidelberg.
26.Sweetman, L., Organic acid analysis. Techniques in diagnostic human biochemical genetics. A laboratory manual, in Techniques in Diagnostic Human Biochemical Genetics: a Laboratory Manual. 1991, Wiley-Liss Inc New York. p. 143-176.
27.Sandoval R, M., Extraction of Phorbol Esters (PEs) from Pinion cake using computationally-designed polymers as adsorbents for Solid Phase Extraction. 2017.
28.Shintani, H., Liquid-Liquid Extraction vs Solid Phase Extraction in Biological Fluids and Drugs. International Journal of Clinical Pharmacology & Toxicology, 2013.
29.Rawa‐Adkonis, M., et al., Sources of Errors Associated with the Determination of PAH and PCB Analytes in Water Samples. Analytical Letters, 2006. 39(11): p. 2317-2331.
30.Mardens, Y., et al., Comparison of two extraction procedures for urinary organic acids prior to gas chromatography—mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 1992. 577(2): p. 341-346.
31.Liu, A., et al., Solid phase extraction procedure for urinary organic acid analysis by gas chromatography mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2004. 806(2): p. 283-7.
32.Kumari, C., et al., Liquid-Liquid Extraction and Solid Phase Extraction for Urinary Organic Acids: A Comparative Study from a Resource Constraint Setting. Indian journal of clinical biochemistry : IJCB, 2016. 31(4): p. 414-422.
33.Wu, S., G. Lyu, and R. Lou, Applications of Chromatography Hyphenated Techniques in the Field of Lignin Pyrolysis. 2012.
34.Kauna-Czaplińska, J., Current Applications of Gas Chromatography/Mass Spectrometry in the Study of Organic Acids in Urine. Critical Reviews in Analytical Chemistry, 2011. 41(2): p. 114-123.
35.Cruz-Castañeda, J., et al., Chemical evolution studies: the radiolysis and thermal decomposition of malonic acid. Journal of Radioanalytical and Nuclear Chemistry, 2014. 304(1): p. 219-225.
36.CHU, N.T. and F.M. CLYDESDALE, Decomposition of Organic Acids During Processing and Storage. Journal of Milk and Food Technology, 1976. 39(7): p. 477-480.
37.Lin, D.-L., et al., Chemical derivatization for the analysis of drugs by GC-MS - A conceptual review. Journal of Food and Drug Analysis, 2008. 16.
38.Neville, G.A., Gas chromatographic and nuclear magnetic resonance spectroscopic studies of 1,3-dimethylbarbiturates obtained by various methylation techniques. Anal Chem, 1970. 42(3): p. 347-51.
39.Orata, F., Derivatization reactions and reagents for gas chromatography analysis. Adv. Gas Chromatogr.—Prog. Agric. Biomed. Ind. Appl., 2012: p. 83-107.
40.Stark, G., et al., The effects of the propranolol enantiomers on the intracardiac electrophysiological activities of Langendorff perfused hearts. Basic Res Cardiol, 1989. 84(5): p. 461-8.
41.Hou, J., J. Zheng, and S.A. Shamsi, Separation and determination of warfarin enantiomers in human plasma using a novel polymeric surfactant for micellar electrokinetic chromatography-mass spectrometry. Journal of chromatography. A, 2007. 1159(1-2): p. 208-216.
42.Ha, S., et al., Identification of ᴅ-amino acid-containing peptides in human serum. PloS one, 2017. 12(12): p. e0189972-e0189972.
43.Zampolli, M., et al., Gas chromatography-mass spectrometry analysis of amino acid enantiomers as methyl chloroformate derivatives: Application to space analysis. Journal of chromatography. A, 2007. 1150: p. 162-72.
44.Ǒi, N. Development of Practical Chiral Stationary Phases for Chromatography and Their Applications. 2005.
45.Chen, B.-G., S.-M. Wang, and R. Liu, GC-MS analysis of multiply derivatized opioids in urine. Journal of mass spectrometry : JMS, 2007. 42: p. 1012-23.
46.Sargsyan, G. Imine and Enamine Hydrolysis Mechanism. [website]; Available from: https://www.chemistrysteps.com/about/. (accessed 2020.07.01)
47.Handley, A.J. and E.R. Adlard, Gas Chromatographic Techniques and Applications. 2001: Sheffield Academic Press.
48.Ball, D.J., et al., Leachables and Extractables Handbook: Safety Evaluation, Qualification, and Best Practices Applied to Inhalation Drug Products. 2012: Wiley.
49.Ferrara, S.D., et al., Therapeutic gamma-hydroxybutyric acid monitoring in plasma and urine by gas chromatography—mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 1993. 11(6): p. 483-487.
50.游蕎瑀, 農產品中17項農藥殘留分析方法之探討. 食品藥物研究年報, 2018(9): p. 39-51.
51.Guneral, F. and C. Bachmann, Age-related reference values for urinary organic acids in a healthy Turkish pediatric population. Clin Chem, 1994. 40(6): p. 862-6.
52.Blau, N., et al., Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases. 2014.
53.Gomez, R.A., et al., The maturing kidney: development and susceptibility. Ren Fail, 1999. 21(3-4): p. 283-91.
54.Arant, B.S., Jr., Postnatal development of renal function during the first year of life. Pediatr Nephrol, 1987. 1(3): p. 308-13.