研究生: |
周郁欣 CHOU, YU-HSIN |
---|---|
論文名稱: |
氣候變遷下臭氧對農業生產影響之探討-以洋香瓜為例 The influence of ozone on agricultural production under climate change-The case of melon |
指導教授: |
翁叔平
Weng, Shu-Ping 郭乃文 Kuo, Nae-Wen |
口試委員: |
陳永明
Chen, Yung-Ming 翁叔平 Weng, Shu-Ping 郭乃文 Kuo, Nae-Wen |
口試日期: | 2021/06/28 |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 189 |
中文關鍵詞: | 氣候變遷 、臭氧 、洋香瓜 |
英文關鍵詞: | climate change, ozone, melon |
DOI URL: | http://doi.org/10.6345/NTNU202200581 |
論文種類: | 學術論文 |
相關次數: | 點閱:113 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣候變遷使得未來秋、冬季溫度明顯上升,使得臭氧污染有更加嚴重的趨勢。臭氧為二次污染物,透過前驅物質如氮氧化物(NOx)與揮發性有機物(VOCs)進行光化學反應後生成,高溫則會使光化學反應加劇,增加臭氧生成,而臭氧則會對部分敏感作物如洋香瓜造成傷害。本研究分析臺灣洋香瓜主要種植區,同時也是秋、冬臭氧污染嚴重的雲嘉南地區內氣溫與臭氧之關聯,並推估未來臭氧的變化,以衡量未來洋香瓜受到臭氧危害之風險。
過去觀測資料分析結果顯示,研究區內氣溫與臭氧為正向關係,兩者之相關程度則隨地區與情境而不同。透過前項所得之氣溫與臭氧關係式,並運用未來推估氣溫之降尺度資料,推估研究區未來臭氧之變化,結果表明研究區在未來秋冬氣溫上升的情況下,將使臭氧濃度上升,使種植洋香瓜的臭氧危害風險增加,另透過臭氧暴露指標也顯示當前洋香瓜已然暴露在臭氧危害之下,未來臭氧濃度上升則將導致危害更加嚴重。目前較少關注到臭氧對洋香瓜之危害,然在未來臭氧濃度提高,可能使此類風險更嚴重且不容忽視,因此相關農業輔導、品種改良可將臭氧防治納入考量,後續亦可進行更多相關實驗研究,以期將臭氧危害防患於未然。
Climate change will increase the temperature in autumn and winter in the future, which will male ozone pollution more serious. Ozone is a secondary pollutant. It is generated through photochemical reation of precursors such as NOx and VOCs. High temperature will aggravate the photochemical reaction and increase the generation of ozone. Ozone will cause harm to some sensitive crops such as melon. This study analyzed the relationship between temperature and ozone in Yunlin, Chayi and Tainan, the main growing areas of melon, and estimated the change of ozone in the future,so as to measure the risk of measure the risk of exposure to ozone.
The results show that there is a positive relationship between temperature and ozone in research area. However, the degree of correlation between the two was different with region and context. Based on the relationship between temperature and ozone in the preceding section, and the downscaling data of future estimated temperature, the future ozone change were estimated. The result showed that under the condition of rising temperature in the future autumn and winter, the ozone would increase and the ozone hazard risk of melon planting would increase. In addition, the ozone exposure index also shows that the melon is already exposed to the ozone hazard, and the increase of ozone in the future will lead to more serious harm. At present, little attention has been paid to the harm of ozone to melon, However , the increase of ozone risk in the future may make such risk more serious and should not be ignored. Therefore, ozone control can be taken unto consideration in relevant agricultural guidance and breed improvement, and more related experimental studies can also be carried out in the future to prevent ozone damage in advance.
中文文獻
行政院農業委員會. (無日期). 洋香瓜主題館-農業知識入口網. Retrieved from https://kmweb.coa.gov.tw/subject/index.php?id=61
行政院農業委員會農糧署. (2019). 農產品生產量值. 農業統計年報.
行政院農業委員會農糧署. (無日期). 農情報告資源網. Retrieved from https://agr.afa.gov.tw/afa/afa_frame.jsp
行政院環境保護署. (2019). 中華民國空氣品質監測報告. 臺北市: 張子敬
行政院環境保護署. (無日期). 環境資源資料庫. Retrieved from https://erdb.epa.gov.tw/Subjects/MetaSubject.aspx?topic1=%E5%A4%A7%E6%B0%A3&topic2=%E7%92%B0%E5%A2%83%E5%8F%8A%E7%94%9F%E6%85%8B%E7%9B%A3%E6%B8%AC&subject=%E7%A9%BA%E6%B0%A3%E5%93%81%E8%B3%AA
何笠維、張欽豪、徐慈鴻. (2011). 臭氧對水稻不同品種葉片為害之比較. 植物保護學會會刊, 53(2), 47-55.
林正忠. (2009). 甜瓜保護:臭氧危害 (Vol. 19:04-12): 行政院農業委員會動植物防疫檢疫局.
空氣品質監測網. (2020a). 光化背景介紹. Retrieved from https://airtw.epa.gov.tw/CHT/TaskMonitoring/Photochemical/PhotochemicalBack.aspx
空氣品質監測網. (2020b). 空氣品質標準. Retrieved from https://airtw.epa.gov.tw/CHT/default.aspx
俞美如、張育森. (2000). 臭氧對植物生育之影響. 科學農業, 48:5/6, 136-141.
柳中明、蘇維中. (1997). 區域氣象環境與高臭氧之相關分析. 大氣科學, 25-1(1), 27-50.
美國國家環境保護署. (2017). 國家環境空氣質量標準. Retrieved from https://www.epa.gov/criteria-air-pollutants/naaqs-table#3
張艮輝, 簡慧貞, & 呂鴻光. (2002). 臭氧污染控制物種與空氣污染防制策略之分析. 環境保護, 25(2), 95-116.
黃圓滿、黃賢良. (2009). 甜瓜保護:作物簡介 (Vol. 19:01-01): 行政院農業委員會動植物防疫檢疫局.
黃瑞彰、黃圓滿、彭瑞菊、黃秀雯、陳昇寬、鄭安秀. (2016). 設施洋香瓜健康管理技術 (Vol. 105-5(NO.166)): 臺南區農業改良場.
楊盛行、朱鈞、盧虎生. (2003). 大氣臭氧濃度及其對水稻生長之影響. 全球變遷通訊雜誌, 40, 130-139.
廖秀婷、徐慈鴻. (2012). 應用 AOT40 (Accumulate exposure over a threshold of 40 ppb) 評估農園作物受臭氧為害之潛勢. 行政院農業委員會農業藥物毒物試驗所技術專刊, 216(107), 1-13.
臺灣氣候變遷推估資訊與調適知識平台. (2021). 資料說明. Retrieved from https://tccip.ncdr.nat.gov.tw/ds_02_06.aspx
歐洲聯盟委員會. (2010). 空氣品質標準. Retrieved from https://ec.europa.eu/environment/air/quality/standards.htm
蔡孟君. (1994). 臭氧對臺灣地區植物之影響. 國立臺灣大學植物病蟲害學研究所碩士論文.
鄧汀欽. (2011). 三十年來台灣瓜類病毒病害的流行趨勢演變. 農作物害蟲及其媒介病害整合防治技術研討會專刊,:, 147-163.
外文文獻
Ainsworth, E. A., Rogers, A., & Leakey, A. D. (2008). Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant physiology, 147(1), 13-19.
Anav, A., De Marco, A., Proietti, C., Alessandri, A., Dell'Aquila, A., Cionni, I., . . . Paoletti, E. (2016). Comparing concentration‐based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. Global change biology, 22(4), 1608-1627.
Avnery, S., Mauzerall, D. L., Liu, J., & Horowitz, L. W. (2011). Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric Environment, 45(13), 2284-2296.
Benton, J., Fuhrer, J., Gimeno, B., Skärby, L., Palmer-Brown, D., Ball, G., . . . Mills, G. (2000). An international cooperative programme indicates the widespread occurrence of ozone injury on crops. Agriculture, ecosystems environment, 78(1), 19-30.
Cooper, O. R., Parrish, D., Ziemke, J., Cupeiro, M., Galbally, I., Gilge, S., . . . Naik, V. (2014). Global distribution and trends of tropospheric ozone: An observation-based review.
Emberson, L., Ashmore, M., Murray, F., Kuylenstierna, J., Percy, K., Izuta, T., . . . Liu, C. (2001). Impacts of air pollutants on vegetation in developing countries. Water, Air,Soil Pollution, 130(1-4), 107-118.
Emberson, L., Büker, P., Ashmore, M., Mills, G., Jackson, L., Agrawal, M., . . . Jamir, C. (2009). A comparison of North American and Asian exposure–response data for ozone effects on crop yields. Atmospheric Environment, 43(12), 1945-1953.
Fernandez-Bayon, J., Barnes, J., Ollerenshaw, J., & Davison, A. (1993). Physiological effects of ozone on cultivars of watermelon (Citrullus lanatus) and muskmelon (Cucumis melo) widely grown in Spain. Environmental Pollution, 81(3), 199-206.
Grulke, N. E., & Heath, R. L. (2020). Ozone effects on plants in natural ecosystems. Plant Biology, 22, 12-37.
Hatakeyama, S., Akimoto, H., & Washida, N. (1991). Effect of temperature on the formation of photochemical ozone in a propene-nitrogen oxide (NOx)-air-irradiation system. Environmental science & technology, 25(11), 1884-1890.
Heggestad, H. E., & Middleton, J. T. (1959). Ozone in high concentrations as cause of tobacco leaf injury. Science, 129(3343), 208-210.
Hill, A. C., Pack, M., Treshow, M., Downs, R., & Transtrum, L. (1961). Plant injury induced by ozone. Phytopathology, 51.
Horton, D. E., & Diffenbaugh, N. S. (2012). Response of air stagnation frequency to anthropogenically enhanced radiative forcing. Environmental Research Letters, 7(4), 044034.
Hůnová, I., Livorová, H., & Ostatnická, J. (2003). Potential ambient ozone impact on ecosystems in the Czech Republic as indicated by exposure index AOT40. Ecological Indicators, 3(1), 35-47.
Krupa, S., McGrath, M. T., Andersen, C. P., Booker, F. L., Burkey, K. O., Chappelka, A. H., . . . Zilinskas, B. A. (2001). Ambient ozone and plant health. Plant Disease, 85(1), 4-12.
Mills, G., Buse, A., Gimeno, B., Bermejo, V., Holland, M., Emberson, L., & Pleijel, H. (2007). A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmospheric Environment, 41(12), 2630-2643.
Mills, G., Hayes, F., Simpson, D., Emberson, L., Norris, D., Harmens, H., & Büker, P. (2011). Evidence of widespread effects of ozone on crops and (semi‐) natural vegetation in Europe (1990–2006) in relation to AOT40‐and flux‐based risk maps. Global Change Biology, 17(1), 592-613.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., . . . Dasgupta, P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: Ipcc.
Pleijel, H., Wallin, G., Karlsson, P., Skärby, L., & Selldén, G. (1995). Gradients of ozone at a forest site and over a field cropconsequences for the AOT40 concept of critical level. Water, air,soil pollution, 85(4), 2033-2038.
Sawada, H., & Kohno, Y. (2009). Differential ozone sensitivity of rice cultivars as indicated by visible injury and grain yield. Plant Biology, 11, 70-75.
Sharma, A., Ojha, N., Pozzer, A., Beig, G., & Gunthe, S. S. (2019). Revisiting the crop yield loss in India attributable to ozone. Atmospheric Environment: X, 1, 100008.
Sillman, S., & Samson, P. J. (1995). Impact of temperature on oxidant photochemistry in urban, polluted rural and remote environments. Journal of Geophysical Research: Atmospheres, 100(D6), 11497-11508.
Simini, M., Snyder, R. G., & Simon, J. E. (1986). Differential sensitivity of muskmelon and watermelon cultivars to ozone-induced foliar injury. Paper presented at the Proceedings of the Indiana Academy of Science.
Staehelin, J., Harris, N., Appenzeller, C., & Eberhard, J. (2001). Ozone trends: A review. Reviews of Geophysics, 39(2), 231-290.
Van Dingenen, R., Dentener, F. J., Raes, F., Krol, M. C., Emberson, L., & Cofala, J. (2009). The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmospheric Environment, 43(3), 604-618.
Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., . . . Lamarque, J.-F. (2011). The representative concentration pathways: an overview. Climatic change, 109(1), 5-31.
WHO. (2000). Effects of ozone on vegetation: critical levels: World Health Organization Regional Office for Europe Copenhagen.