簡易檢索 / 詳目顯示

研究生: 林承岳
論文名稱: 藉由族群遺傳分析與基因轉殖小鼠模式探討TBP基因上CAG三核苷酸重複序列對神經退化性疾病之影響
Investigation of the neurodegenerative impact of CAG expansion in TBP gene through Taiwan neurodegenerative patients and transgenic mouse model
指導教授: 謝秀梅
Hsieh, Hsiu-Mei
李桂楨
Lee, Guey-Jen
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 80
中文關鍵詞: 第十七型脊髓小腦運動失調症基因轉殖小鼠族群遺傳分析
英文關鍵詞: TATA binding protein, spinocerebellar ataxia type 17
論文種類: 學術論文
相關次數: 點閱:239下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • TATA binding protein (TBP) 為細胞中一種主要的轉錄因子,其在主導基因轉錄的起始過程中扮演著重要的角色。人類TBP基因位於染色體6q27,其5’端包含一段CAG三核苷酸重複序列,轉譯出的蛋白質N端上會形成一段多麩醯胺(polyglutamine, polyQ) 的片段。在神經退化性疾病研究中發現TBP功能異常與疾病的發生有關,包括杭丁頓氏舞蹈症 (Huntington’s disease, HD)、阿茲罕默氏症 (Alzheimer’s disease, AD) 以及第十七型脊髓小腦運動失調症(SCA17)。SCA17為一種體染色體顯性遺傳之神經退化性疾病,屬於眾多類型的脊髓小腦運動失調症 (SCA) 其中一型,臨床上患者有小腦萎縮、吞嚥困難、智力退化、以及錐體外徑路 (extrapyramidal tract) 等症狀。目前已知SCA17致病原因與TBP基因之CAG重複序列擴增有關,正常族群中重複次數為31到42個,患病者則擴增為43到66個。為探討TBP基因上CAG重複序列在台灣人族群中之分布情況,我們針對正常人族群及不同類型的神經退化性病人進行TBP基因型分析,結果發現在各族群中最常見之CAG重複個數為36個。此外分別檢測出4位失智症 (Dementia) 患者與2位帕金森氏症 (Parkinson’s disease, PD) 患者帶有擴增之等位基因 (allele)。為建立SCA17之動物模式,我們分別將帶有36與109個CAG重複之人類TBP (hTBP) 基因,以pcp2/L7組織專一性啟動子大量表現於小鼠小腦的Purkinje細胞,目前成功建立7株基因轉殖小鼠。由分生分析中証實,轉殖的hTBP在基因轉殖小鼠體內均可正常表現。基因轉殖小鼠行為觀察實驗發現,hTBP109Q line-16與line-54小鼠出現clasping症狀,line-54與line-69更分別於6到9個月大時出現運動失調之症狀。經由rota-rod滾輪測試小鼠之運動能力發現,在line-54與line-69之基因轉殖小鼠,其平衡感與協調性表現明顯劣於非基因轉殖小鼠,而hTBP36Q之基因轉殖小鼠則未出現此一差異。由組織切片觀察中發現hTBP109Q基因轉殖小鼠之小腦Purkinje細胞確實有受損之情形。本篇論文之實驗結果一方面建立國人族群遺傳資料庫,另一方面建立SCA17疾病動物模式,提供後續致病機轉探討與臨床治療、篩檢藥物研究之利器。

    TATA binding protein (TBP) is a general transcription factor that plays an important role in initiation of transcription. TBP gene is located in chromosome 6q27 and contains a CAG/CAA trinucleotide repeats region in 5’ end which encodes a polyglutamine tract. It was reported that TBP is involved in numerous neurodegenerative diseases including Huntington’s disease (HD), Alzheimer’s disease (AD) and spinocerebellar ataxia type 17 (SCA17). SCA17 is an autosomal dominant cerebellar ataxia (ADCA). It has been known that the length of polyglutamine tract encoded by the CAA/CAG repeats is related to the disease progression. The range of CAG repeats of TBP gene is 31- 42 in normal population and 43 - 63 in SCA17 patients.
    To investigate the TBP trinucleotide expansion effect on neurodegeneration, we conducted genotyping analysis in both normal and neurodegenerative disease populations in Taiwan. We found that the most common TBP allele contains 36 repeats. We identified six individuals with expanded CAG repeats from two families originally diagnosed as PD and Dementia, respectively.
    To establish SCA17 disease animal model, we generate transgenic mice expressing the human TBP gene with either normal or expanded CAA/CAG tracts under the control of Purkinje cell-specific promoter, Pcp2/L7 promoter. Seven transgenic mouse lines have been identified. The existence of transgene in the mouse genome was confirmed by Southern blot analysis. RNA and protein expressions were detected by RT-PCR ad Western blot analyses, respectively.
    By behavior observation, we found that hTBP109Q line-16 and line-54 transgenic mice have a hind-limb clasping phenotype, which was also reported by Huntington’s disease transgenic mice. Among the 7 transgenic lines, line-69 and line-54 showed significant reduction in the Rota-rod performance compared to their wild-type littermates. We also observe ataxia phenotype of these two lines in their elder stage. Immunohistochemical analysis has shown that the Purkinje cell in line-69 transgenic mouse cerebellum were lost severly.
    In conclusion, we have successfully generated the hTBP transgenic mice as SCA17 animal model. This model should help us to gain insight about the role of TBP in neurodegeneration and eventually could lead to rational therapeutic protocol designing.

    目錄.......................................................I 中文摘要....................................................V 英文摘要..................................................VII 圖表次....................................................IX 壹、 緒論 一、 脊髓小腦運動失調症 (Spinocerebellar ataxia)..........1 二、 小腦萎縮症之臨床病症及類型............................1 三、 小腦萎縮症之分生特徵.................................2 四、 多麩醯胺酸擴增疾病 (Polyglutamine expansion diseases)..................................................3 五、 第十七型脊髓小腦運動失調症 (SCA17)....................4 六、 基因轉殖小鼠技術 (Transgenic mice)...................6 七、 Purkinje cell......................................7 貳、 研究目的............................................9 參、 研究材料與方法.....................................10 第一部份、TBP基因CAG三核苷酸重複的族群遺傳分析 一、 血液樣品來源.......................................10 二、 基因組DNA的萃取....................................10 三、 聚合酵素連鎖反應(PCR)...............................11 四、 基因型分析 (Genotyping)............................11 五、 純化DNA片段........................................11 六、 接合反應 (Ligation)................................12 七、 轉型勝任細胞 (competent cell) 之製備................13 八、 細菌的轉形作用(transformation).....................13 九、 質體(plasmid)DNA之小量製備.........................14 十、 DNA定序 (sequencing)..............................15 第二部份、建立SCA17疾病動物模式 一、 TBP基因轉殖重組質體之構築...........................15 二、 質體DNA的大量製備..................................16 三、 顯微注射DNA片段 (injection fragment) 之製備.........17 四、 基因轉殖小鼠之建立..................................18 五、 基因轉殖小鼠之基因型分析.............................19 六、 南方墨漬法分析 (Southern blot analysis)............20 七、 轉殖基因拷貝數定量 (Transgene copy number quantitation).............................................20 八、 FVB小鼠腦組織之總RNA萃取 (RNA extraction)...........21 九、 反轉錄聚合酵素連鎖反應 (RT-PCR).....................22 十、 總蛋白質萃取與西方墨漬法分析 (Western blot analysis).................................................23 十一、 實驗動物飼養.......................................24 十二、 行為測試 (Behavioral experiments)..................24 (1)自發性運動行為偵測 (Locomotor activity monitoring).....25 (2)旋轉滾輪測試 (Rota-rod test)...........................25 (3)抓力測試 (grip strengthen test).......................26 十三、 免疫組織化學法 (Immunohistochemistry)分析...........26 十四、 統計方法 (Statistical analysis)....................28 肆、 研究結果 一、 建立台灣不同族群SCA17 TBP基因CAG重複之遺傳資料庫......29 二、 SCA17 TBP基因轉殖小鼠之建立.........................29 三、 hTBP基因在基因轉殖小鼠腦部之表現 (1) RNA之表現.........................................31 (2) 蛋白質之表現.......................................32 四、 基因轉殖小鼠之行為檢測 (1) clasping行為觀察...................................33 (2) Locomotor測試.....................................33 (3) Rota-rod行為測試...................................34 (4) Grip strengthen測試...............................35 五、 基因轉殖小鼠之腦組織病理學分析.......................36 伍、 討論 一、 TBP基因CAG重複序列在台灣人族群中之分布情形............39 二、 建立帶有人類TBP基因之基因轉殖小鼠....................40 三、 人類TBP基因在基因轉殖小鼠腦中表現情況.................42 四、 人類TBP基因轉殖小鼠行為上之異常現象...................43 五、 人類TBP基因轉殖小鼠腦部受損情況......................45 陸、 結論..............................................48 柒、 參考文獻...........................................50 捌、 附錄圖表...........................................59

    Aguiar J, Fernandez J, Aguilar A, Mendoza Y, Vazquez M, Suarez J, Berlanga J, Cruz S, Guillen G, Herrera L, Velazquez L, Santos N, Merino N (2006) Ubiquitous expression of human SCA2 gene under the regulation of the SCA2 self promoter cause specific Purkinje cell degeneration in transgenic mice. Neurosci Lett 392:202-206.
    Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805-810.
    Baader SL, Schilling K (1996) Glutamate receptors mediate dynamic regulation of nitric oxide synthase expression in cerebellar granule cells. J Neurosci 16:1440-1449.
    Bauer P, Laccone F, Rolfs A, Wullner U, Bosch S, Peters H, Liebscher S, Scheible M, Epplen JT, Weber BH, Holinski-Feder E, Weirich-Schwaiger H, Morris-Rosendahl DJ, Andrich J, Riess O (2004) Trinucleotide repeat expansion in SCA17/TBP in white patients with Huntington's disease-like phenotype. J Med Genet 41:230-232.
    Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C, Fetoni V, Mariotti C, Migone N, Di Donato S, Taroni F (2004) Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol 61:727-733.
    Burright EN, Clark HB, Servadio A, Matilla T, Feddersen RM, Yunis WS, Duvick LA, Zoghbi HY, Orr HT (1995) SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82:937-948.
    Cagnoli C, Mariotti C, Taroni F, Seri M, Brussino A, Michielotto C, Grisoli M, Di Bella D, Migone N, Gellera C, Di Donato S, Brusco A (2006) SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain 129:235-242.
    Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537-548.
    De Michele G, Maltecca F, Carella M, Volpe G, Orio M, De Falco A, Gombia S, Servadio A, Casari G, Filla A, Bruni A (2003) Dementia, ataxia, extrapyramidal features, and epilepsy: phenotype spectrum in two Italian families with spinocerebellar ataxia type 17. Neurol Sci 24:166-167.
    Dunn ME, Schilling K, Mugnaini E (1998) Development and fine structure of murine Purkinje cells in dissociated cerebellar cultures: dendritic differentiation, synaptic maturation, and formation of cell-class specific features. Anat Embryol (Berl) 197:31-50.
    Fujigasaki H, Martin JJ, De Deyn PP, Camuzat A, Deffond D, Stevanin G, Dermaut B, Van Broeckhoven C, Durr A, Brice A (2001) CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain 124:1939-1947.
    Gostout B, Liu Q, Sommer SS (1993) "Cryptic" repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes. Am J Hum Genet 52:1182-1190.
    Gwinn-Hardy K, Chen JY, Liu HC, Liu TY, Boss M, Seltzer W, Adam A, Singleton A, Koroshetz W, Waters C, Hardy J, Farrer M (2000) Spinocerebellar ataxia type 2 with parkinsonism in ethnic Chinese. Neurology 55:800-805.
    Harding AE (1993) Clinical features and classification of inherited ataxias. Adv Neurol 61:1-14.
    Hernandez D, Hanson M, Singleton A, Gwinn-Hardy K, Freeman J, Ravina B, Doheny D, Gallardo M, Weiser R, Hardy J, Singleton A (2003) Mutation at the SCA17 locus is not a common cause of parkinsonism. Parkinsonism Relat Disord 9:317-320.
    Higgins GA, Jacobsen H (2003) Transgenic mouse models of Alzheimer's disease: phenotype and application. Behav Pharmacol 14:419-438.
    Holmes SE, O'Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, Kwak NG, Ingersoll-Ashworth RG, Sherr M, Sumner AJ, Sharp AH, Ananth U, Seltzer WK, Boss MA, Vieria-Saecker AM, Epplen JT, Riess O, Ross CA, Margolis RL (1999) Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nat Genet 23:391-392.
    Hsieh M, Lin SJ, Chen JF, Lin HM, Hsiao KM, Li SY, Li C, Tsai CJ (2000) Identification of the spinocerebellar ataxia type 7 mutation in Taiwan: application of PCR-based Southern blot. J Neurol 247:623-629.
    Ikeda H, Yamaguchi M, Sugai S, Aze Y, Narumiya S, Kakizuka A (1996) Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nat Genet 13:196-202.
    Imbert G, Trottier Y, Beckmann J, Mandel JL (1994) The gene for the TATA binding protein (TBP) that contains a highly polymorphic protein coding CAG repeat maps to 6q27. Genomics 21:667-668.
    Jaenisch R, Mintz B (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci U S A 71:1250-1254.
    Katsuno M, Adachi H, Inukai A, Sobue G (2003) Transgenic mouse models of spinal and bulbar muscular atrophy (SBMA). Cytogenet Genome Res 100:243-251.
    Kim M, Lee HS, LaForet G, McIntyre C, Martin EJ, Chang P, Kim TW, Williams M, Reddy PH, Tagle D, Boyce FM, Won L, Heller A, Aronin N, DiFiglia M (1999) Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition. J Neurosci 19:964-973.
    Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 8:2047-2053.
    Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, Ranum LP (1999) An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 21:379-384.
    Maltecca F, Filla A, Castaldo I, Coppola G, Fragassi NA, Carella M, Bruni A, Cocozza S, Casari G, Servadio A, De Michele G (2003) Intergenerational instability and marked anticipation in SCA-17. Neurology 61:1441-1443.
    Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493-506.
    Maschke M, Oehlert G, Xie TD, Perlman S, Subramony SH, Kumar N, Ptacek LJ, Gomez CM (2005) Clinical feature profile of spinocerebellar ataxia type 1-8 predicts genetically defined subtypes. Mov Disord 20:1405-1412.
    McCampbell A, Taylor JP, Taye AA, Robitschek J, Li M, Walcott J, Merry D, Chai Y, Paulson H, Sobue G, Fischbeck KH (2000) CREB-binding protein sequestration by expanded polyglutamine. Hum Mol Genet 9:2197-2202.
    Mohn AR, Feddersen RM, Nguyen MS, Koller BH (1997) Phenotypic analysis of mice lacking the highly abundant Purkinje cell- and bipolar neuron-specific PCP2 protein. Mol Cell Neurosci 9:63-76.
    Morfini G, Pigino G, Brady ST (2005) Polyglutamine expansion diseases: failing to deliver. Trends Mol Med 11:64-70.
    Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10:1441-1448.
    Nordquist DT, Kozak CA, Orr HT (1988) cDNA cloning and characterization of three genes uniquely expressed in cerebellum by Purkinje neurons. J Neurosci 8:4780-4789.
    O'Hearn E, Holmes SE, Calvert PC, Ross CA, Margolis RL (2001) SCA-12: Tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion. Neurology 56:299-303.
    Oberdick J, Levinthal F, Levinthal C (1988) A Purkinje cell differentiation marker shows a partial DNA sequence homology to the cellular sis/PDGF2 gene. Neuron 1:367-376.
    Perez MK, Paulson HL, Pendse SJ, Saionz SJ, Bonini NM, Pittman RN (1998) Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol 143:1457-1470.
    Reid SJ, van Roon-Mom WM, Wood PC, Rees MI, Owen MJ, Faull RL, Dragunow M, Snell RG (2004) TBP, a polyglutamine tract containing protein, accumulates in Alzheimer's disease. Brain Res Mol Brain Res 125:120-128.
    Reid SJ, Rees MI, van Roon-Mom WM, Jones AL, MacDonald ME, Sutherland G, During MJ, Faull RL, Owen MJ, Dragunow M, Snell RG (2003) Molecular investigation of TBP allele length: a SCA17 cellular model and population study. Neurobiol Dis 13:37-45.
    Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, Schols L, Riess O (2003) Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol 54:367-375.
    Ross CA (2002) Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron 35:819-822.
    Rubinsztein DC, Leggo J, Crow TJ, DeLisi LE, Walsh C, Jain S, Paykel ES (1996) Analysis of polyglutamine-coding repeats in the TATA-binding protein in different human populations and in patients with schizophrenia and bipolar affective disorder. Am J Med Genet 67:495-498.
    Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95:55-66.
    Schilling G, Wood JD, Duan K, Slunt HH, Gonzales V, Yamada M, Cooper JK, Margolis RL, Jenkins NA, Copeland NG, Takahashi H, Tsuji S, Price DL, Borchelt DR, Ross CA (1999) Nuclear accumulation of truncated atrophin-1 fragments in a transgenic mouse model of DRPLA. Neuron 24:275-286.
    Schols L, Bauer P, Schmidt T, Schulte T, Riess O (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 3:291-304.
    Silveira I, Miranda C, Guimaraes L, Moreira MC, Alonso I, Mendonca P, Ferro A, Pinto-Basto J, Coelho J, Ferreirinha F, Poirier J, Parreira E, Vale J, Januario C, Barbot C, Tuna A, Barros J, Koide R, Tsuji S, Holmes SE, Margolis RL, Jardim L, Pandolfo M, Coutinho P, Sequeiros J (2002) Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Arch Neurol 59:623-629.
    Slow EJ, Graham RK, Osmand AP, Devon RS, Lu G, Deng Y, Pearson J, Vaid K, Bissada N, Wetzel R, Leavitt BR, Hayden MR (2005) Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc Natl Acad Sci U S A 102:11402-11407.
    Soong BW, Lu YC, Choo KB, Lee HY (2001) Frequency analysis of autosomal dominant cerebellar ataxias in Taiwanese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Arch Neurol 58:1105-1109.
    Stevanin G, Fujigasaki H, Lebre AS, Camuzat A, Jeannequin C, Dode C, Takahashi J, San C, Bellance R, Brice A, Durr A (2003) Huntington's disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain 126:1599-1603.
    Strong PN, Brewster BS (1997) Myotonic dystrophy: molecular and cellular consequences of expanded DNA repeats are elusive. J Inherit Metab Dis 20:159-170.
    Wanner I, Baader SL, Brich M, Oberdick J, Schilling K (1997) Subcellular localization of specific mRNAs and their protein products in Purkinje cells by combined fluorescence in situ hybridization and immunocytochemistry. Histochem Cell Biol 108:345-357.
    Waters MF, Fee D, Figueroa KP, Nolte D, Muller U, Advincula J, Coon H, Evidente VG, Pulst SM (2005) An autosomal dominant ataxia maps to 19q13: Allelic heterogeneity of SCA13 or novel locus? Neurology 65:1111-1113.
    Wu YR, Fung HC, Lee-Chen GJ, Gwinn-Hardy K, Ro LS, Chen ST, Hsieh-Li HM, Lin HY, Lin CY, Li SN, Chen CM (2005) Analysis of polyglutamine-coding repeats in the TATA-binding protein in different neurodegenerative diseases. J Neural Transm 112:539-546.
    Yamada M, Sato T, Shimohata T, Hayashi S, Igarashi S, Tsuji S, Takahashi H (2001) Interaction between neuronal intranuclear inclusions and promyelocytic leukemia protein nuclear and coiled bodies in CAG repeat diseases. Am J Pathol 159:1785-1795.
    Yvert G, Lindenberg KS, Devys D, Helmlinger D, Landwehrmeyer GB, Mandel JL (2001) SCA7 mouse models show selective stabilization of mutant ataxin-7 and similar cellular responses in different neuronal cell types. Hum Mol Genet 10:1679-1692.
    Zhang X, Baader SL, Bian F, Muller W, Oberdick J (2001) High level Purkinje cell specific expression of green fluorescent protein in transgenic mice. Histochem Cell Biol 115:455-464.
    Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217-247.
    Zuhlke C, Gehlken U, Hellenbroich Y, Schwinger E, Burk K (2003) Phenotypical variability of expanded alleles in the TATA-binding protein gene. Reduced penetrance in SCA17? J Neurol 250:161-163.
    Zuhlke C, Hellenbroich Y, Dalski A, Kononowa N, Hagenah J, Vieregge P, Riess O, Klein C, Schwinger E (2001) Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur J Hum Genet 9:160-164.

    QR CODE