簡易檢索 / 詳目顯示

研究生: 張育杰
Chang, Yu-Chien
論文名稱: 石墨烯插層對Co/Cu薄膜的磁特性影響研究
指導教授: 蔡志申
Tsay, Jyh-Shen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 112
中文關鍵詞: 石墨烯磁光柯爾效應電鍍銅(100)循環伏安法
英文關鍵詞: Graphene, Copper(100), Cobalt, electrodeposition, MOKE, CV
DOI URL: https://doi.org/10.6345/NTNU202203872
論文種類: 學術論文
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在水溶液環境中利用電化學的方式成長Co薄膜在Cu(100)及graphene
    /Cu上並進行磁性量測,再加入紫精酸的異質介面,研究Co薄膜在不同的介面對磁特性的影響,其中使用循環伏安法量測其成分組成,並使用磁光柯爾效應進行磁性量測。發現5至20 nm的Co薄膜在Cu(100)及graphene/Cu表面上成長,隨著厚度上升皆表現出縱向方向為磁化易軸,接著進一步分析縱向的磁滯曲線可以得到其飽和磁化量、殘磁、方正度以及矯頑力。Co/Cu(100)於不同電位測量時,其飽和磁化量、殘磁、矯頑力並無明顯的變化,而Co/graphene/Cu上則在特定的厚度會產生雙磁滯曲線疊加的現象,並且隨著電位可以控制其磁特性,比較石墨烯插層對Co/Cu薄膜的矯頑力影響,發現在任何電位下Co/Cu(100)薄膜的矯頑力皆大於Co/graphene
    /Cu薄膜。而後在Co/Cu(100)上覆蓋紫精酸會使得較薄的Co膜其飽和磁化量與殘磁下降且矯頑力上升,但是至12 nm以上時便不受影響,然而Co/grap
    hene/Cu於不同電位測量時,覆蓋紫精酸並無明顯變化。此研究發現在紫精酸及石墨烯之異質介面對Co薄膜受電位控制時的磁特性有微小的變化,對於開發電控制磁性元件附有應用潛力。

    致謝 ii 摘要 iii 縮寫表 iv 目錄 v 第一章 緒論 1 第二章 實驗原理 6 2-1 薄膜磊晶成長理論 6 2-2 電化學原理 8 (一)電雙荷層 9 (二) 電化學反應與電子轉移 11 (三) 法拉第律 13 (四) 循環伏安法 15 (五) 能斯特方程 17 2-3磁性物質與磁性理論 20 (一) 磁性物質種類 20 (二) 鐵磁性物質 22 (三) 磁異向性理論 25 (四)電場對磁性的影響 28 第三章 實驗儀器介紹 31 3-1 電化學儀器介紹 31 (一)電化學電鍍槽 31 (二) 電化學循環伏安儀 32 3-2 磁光柯爾效應儀器介紹 33 (一) 柯爾磁光效應理論 33 (二) 磁光柯爾效應器材 37 (三) 磁光柯爾效應儀器架設 38 3-3實驗材料及步驟 41 (一) 銅、鈷、石墨烯的物性介紹 41 (二) 實驗藥品、氣體和金屬介紹 44 (三) 實驗前準備以及實驗步驟 46 第四章 實驗結果與討論 51 4-1循環伏安法(CV)實驗結果與討論 51 (一)Cu(100)之循環伏安法研究 51 (二)Graphene/Cu之循環伏安法研究 56 (三)膜厚計算 61 (四)綜合討論 62 4-2 紫精酸對Co/Cu(100)薄膜的磁特性影響研究 64 (一)Co/Cu(100)薄膜在不同電位下的磁性量測 64 (二)紫精酸/Co/Cu(100)在不同電位下的磁性量測 70 (三)綜合討論 77 4-3 紫精酸對Co/graphene/Cu薄膜的磁特影響研究 81 (一)Co/graphene/Cu薄膜在不同電位下的磁性量測 81 (二)紫精酸/Co/graphene/Cu在不同電位下的磁性量測 88 (三)綜合討論 95 4-4 石墨烯插層對Co/Cu薄膜的磁特性影響研究 101 (一)石墨烯插層對Co/Cu薄膜在不同電位下的磁性討論 101 (二)紫精酸覆蓋層對石墨烯插層之Co/Cu的磁性影響討論 102 第五章 結論 103 附錄 離子液體 104 (一) 離子液體的定義 104 (二) 離子液體的歷史 105 (三) 離子液體的特性 106     (四)離子液體的黏滯性實驗 107 第六章 參考資料 110

    [1]T. Mangen,H.S. Bai, J.S. Tsay, J. Magn. Magn. Mater.322, 1863 (2010).
    [2]M. Weisheit, S. Fähler, A. Marty, Y. Souche, C. Poinsignon, D. Givord, Science 315, 349 (2007).
    [3]Cheng-Hsun-Tony Chang, Wei-Hsu Kuo, Jyh-Shen Tsay,Surf. Coat. Technol (2016) in press.
    [4] S.L. Tsay, J.S. Tsay, T.Y. Fu, P. Broekmann, T. Sagara, K. Wandelt, Phys Chem. Chem. Phys.12, 14950 (2010).
    [5]N. Rougemaille, A. T. N'Diaye, J. Coraux, C. Vo-Van, O. Fruchart and A. K. Schmid,Appl. Phys. Lett. 101, 142403 (2012).
    [6] L. Argile, G. E. Rhead, Surf. Sci. Rep. 10, 277 (1989).
    [7] J. A. C. Bland, B. Heinrich Ultrathin Magnetic Structures I & II, Springer- Verlag, Berlin Heidelberg (1994).
    [8] E. Bauer, Appl. Surf. Sci. 11, 479 (1982).
    [9]D.R.Lide, Handbook of Chemistry and Phys., 72nd ed., Chemical Rubber Publishing Company, England 257, (1991).
    [10] J.S. Newman, “ Elect rochemical Systems, 2nd ed”, Prentice-Hall, Englewood Cliffs, New Jersey, (1991).
    [11]A.J. Bard and L.R. Faulkner, Electrochemical Methods-Fundamentals and Applications, 2^ndedit, John Wiley & Sons, INC, New York (2001).
    [12]D.R. Crow, Principles and Applications of Electrochemistry, 4th Edition, CRC Pr I Llc, (1994).
    [13] S.S. Zumdahl, Chemical Principles, 5th edition; Houghton Mifflin Company: Boston, 475 (2003).
    [14] C. E. Housecroft, A. G. Sharpe, Inorganic chemistry, 2nd edit, Pearson Education Limited, Edinburgh Gate.
    [15] B.D. Cullity, Introduction to Magnetism and Magnetic Materials, Addison Wesley, New York (1972).
    [16] D. Jiles, Introduction to Magnetism and Magnetic Materials, 1^stedit, Chapman and Hall, London (1991).
    [17]M.T. Johnson,P.J.H. Bloemen, F.J.A. den Broeder, J.J. de Vries, Rep. Prog. Phys. 59, 1409 (1996).
    [18]N. Tournerie,A. P. Engelhardt,† F. Maroun, and P. Allongue,phys Rev. B 86, 104434 (2012).
    [19]W.C. Lin, P.C. Chang, C.J. Tsai, T.C. Shieh, F.Y. Lo, Appl. Phys. Lett.104, 062411 (2014).
    [20] E.R. Moog and S.D. Bader, Superlattices Microstruct. 1, 543 (1985).
    [21]Z.Q. Qiu, J. Pearson, and S.D. Bader, Phys. Rev. B 45, 7211 (1992).
    [22] J. D. Jackson, Classical Electrodynamics, 3^rdedit, John Wiley & Sons INC, New York, USA (1998)..
    [23] Z.Q. Qiu and S. D. Bader, J. Magn. Magn. Mater.200, 664 (1999).
    [24] W. M. Haynes, T. J. Bruno, D. R. Lide, CRC Handbook of Chemistry and Physics, 95th Edition, Internet Version (2015).
    [25] M. Chase, Binary Alloy Phase Diagrams, ASM international, Ohio (1996).
    [26] Anatholy V. Chichagov, Crystallographic and Crystallochemical Database for Minerals and their Structural Analogues, Chernogolovka, IEM RAS (2006).
    [27]A. K. Geim , Science 324, 1530 (2009).
    [28]Lee C, Wei X, Jeffrey W. Kysar, James Hone, Science. 321, 5887 (2008).
    [29]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim1, Science 320, 5881 (2008).
    [30]Physicists Show Electrons Can Travel More Than 100 Times Faster in Graphene :: University Communications Newsdesk, University of Maryland. N.p., 09 (2013).
    [31] P.Y. Yen, S. Chen, H.L. Tu, H. Wu, S.L. Yau, J.S. Tsay, J. Phys. Chem. C 115, 23802 (2011).
    [32]Chun-Liang Lin, An-Wei Wu, Ying-Chieh Wang, Yu-Chieh Tseng and Jyh-Shen Tsay*, Phys.Chem. Chem. Phys 15, 2360 (2013).
    [33]Bernd Wohlmann, Zin Park, Michael Kruft, Christopher Stuhlmann, Klaus Wandelt, Surf. A-Physicochem. Eng. 134, 15 ( 1998 ).
    [34]N. Rougemaille, A. T. N’Diaye, J. Coraux, C. Vo-Van, O. Fruchart, and A. K. Schmid, Appl. Phys. Lett. 101, 142403 (2012)
    [35] T.Welton, Chem. Rev. 99, 2071 (1999).
    [36] F.H. Hurley, T.P. FWier, J. Electrochem. Soc. 98, 207 (1951).
    [37] J.S. Wilkes, Inorg. Chem. 21, 1263 (1982).
    [38] P.Wasserscheid, W.Keim, Int. Ed. 39, 3772 (2000).
    [39] J.L. Anderson,D.W., Armstrong,G.T., Wei, Anal., Chem. 78, 2892 (2006).
    [40] S.N. Aki, J.F. Brennecke, A. Samanta, Chem. Commun. 5, 413 (2001).
    [41] P.Wasserscheid,W.Keim,”Ionic Liquids-New “Solutions” for Transition Metal Catalysis” Angew .Chem. Int. Ed. 39, 3772 (2000).

    無法下載圖示 本全文未授權公開
    QR CODE