簡易檢索 / 詳目顯示

研究生: 馬逸倫
Ma, I-Lun
論文名稱: 適用於發光二極體導電擴散層之石墨烯材料特性研究
Light-Emitting Diodes with Graphene Film as a Transparent Conducting Electrode
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 117
中文關鍵詞: 石墨烯發光二極體氧化鎳
英文關鍵詞: Graphene, light-emitting-diode, NiOx
DOI URL: https://doi.org/10.6345/NTNU202204748
論文種類: 學術論文
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯是一種由碳原子六角形陣列的二維碳材料,其具有卓越的特性,如低片電阻、高穿透度、機械與熱特性等,被認為是未來優良之透明導電電極能夠運用於許多光電子元件上。
    本實驗中,吾等將化學氣相沉積生產之石墨烯運用於發光二極體元件之p-GaN上作為透明導電電流擴散層。化學氣相沉積5 sccm甲烷、10 sccm氫氣與100 ~ 500 sccm氬氣濃度混和於攝氏900 ℃沉積石墨烯薄膜,接續運用奈米轉印技術將石墨稀轉印至發光二極體元件之p-GaN上。為了減少石墨烯與p-GaN界面之間蕭特基位能障,在p-GaN表面先沉積厚度為3奈米之鎳奈米層(Ni thin film),緊接著將樣品放置於含氧氣體中以攝氏400℃進行熱退火3分鐘,使其鎳奈米層轉換成氧化鎳(NiO),後續將石墨烯轉印於氧化鎳上再做一次熱退火使石墨烯與NiO/ p-GaN緊密接合,以降低石墨烯與p-GaN之間之蕭特基位能障進而形成歐姆接觸。最後使用圓形傳輸線模型(CTLM)進行電性量測。

    Graphene is a two-dimensional carbon material which consists of hexagonal array of carbon atoms, and offers exceptional characteristics such as high transparency, low sheet resistance, suppleness, etc. In this study, we show that chemical vapor deposition grown graphene on copper foil and transfer it on p-GaN as light-emitting-devices transparent conducting electrode. To decrease Schottky barrier between graphene and p-GaN interface, we deposit Ni nanolayer on p-GaN substract as a buffer layer between graphene and p-GaN. After deposited 3 nm thickness nickel (Ni thin film) on p-GaN surface, followed by placing the sample in an oxygen-containing gas to 400°C thermal annealing for 3 minutes, so that the nickel layer is converted into nano nickel oxide (NiOx) dots. NiOx dots haave high transparency at blue light and UV light region. Follow the graphene transferred to do a thermal anneal make graphene with NiO / p-GaN close contact, in order to reduce the Schottky barrier between graphene and the p-GaN thus forming an ohmic contact on nickel oxide. Finally, using a circular transmission line model (CTLM) for electrical resistance measurements.

    致謝 2 摘要 4 圖目錄 9 表目錄 14 第一章 緒論 15 1.1 研究動機 15 1.2 石墨烯之起源 17 1.3 石墨烯之製備方式 20 1.4 石墨烯基本特性 26 1.4.1 石墨烯電子特性與能帶特性 26 1.4.2 石墨烯光學特性 28 1.5發光二極體介紹與原理 31 1.5.1 發光二極體之原理 31 1.5.2 氮化物發光二極體結構 33 1.6 石墨烯運用於發光二極體 36 1.6.1 電流擴散層之導電薄膜分析 36 1.6.2 導電薄膜材料歐姆接觸 38 1.7 文獻回顧 41 1.7.1期刊回顧 41 1.7.2專利回顧 57 第二章 實驗儀器介紹與樣品製備流程 60 2.1實驗準備與預處理 60 2.2實驗樣品製程 62 2.3轉印步驟 67 2.3.1 PDMS 68 2.3.2 PMMA 70 2.3.3 TRT 72 2.4氧化鎳緩衝層材料實驗 74 2.5石墨烯電流擴散層與發光二極體 74 2.6量測儀器介紹 75 第三章 實驗結果與討論 79 3.1製備石墨烯實驗結果與特性量測 79 3.1.1銅箔預處理差異SEM圖分析 79 3.1.2混和氬氣氣體流量SEM與拉曼圖譜分析 81 3.1.4最佳氬氣氣體流量透光率分析 86 3.1.5最佳氬氣氣體流量片電阻分析 87 3.2氧化鎳緩衝層製程 89 3.2.1不同厚度鎳金屬氧化之EDS分析 89 3.2.2不同厚度鎳金屬氧化之XPS分析 90 3.2.3最佳厚度鎳金屬氧化之穿透度分析 92 3.2.4最佳氧化鎳材料SEM-TEM分析 93 3.3石墨烯電流擴散層組合發光二極體之實驗結果 95 3.3.1轉印後相異退火溫度分析 95 3.3.2轉印後相異退火溫度IV曲線 97 3.3.3最佳退火溫度SIMS分析 98 3.3.4最佳退火溫度TEM量測 100 3.3.5最佳退火溫度CTLM電性量測 101 第四章 結論 105 參考文獻 106

    參考文獻
    [1] http://case.ntu.edu.tw/blog/?p=5473
    [2] F. Bonaccorso, Z. Sun, T. Hasan, A. Ferrari, Graphene Photonics and Optoelectronics, Nature Photonics 4 (9), 611-622 (2010).
    [3] G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, T. Lee, The application of Graphene as Electrodes in Electrical and Optical Devices, Nanotechnology 23 (11), 112001(2012).
    [4] http://technews.tw/2014/10/07/the-nobel-prize-in-physics-blue-led/
    [5] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, S. Seal, Graphene Based Materials: Past, Present and Future, Materials Science 56 (8), 1178-1271(2011).
    [6] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science 312 (5777), 1191-1196(2006).

    [7] W. Norimatsu, M. Kusunoki, Formation Process of Graphene on SiC (0001), Physica E: Low-dimensional Systems and Nanostructures 42 (4), 691-694(2010).
    [8] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, James. M. Tour, Growth of Graphene from Solid Carbon Sources, Nature 468 (7323), 549-552(2010).
    [9] G. Ruan, Z. Sun, Z. Peng, J. M. Tour, Growth of Graphene from Food, Insects, and Waste, ACS Nano 5 (9), 7601-7607(2011).
    [10] S. William, JR. Hummers, R. E. Offeman, Preparation of Graphitic Oxide, Journal of the American Chemical Society 80 (6), 1339-1339(1958).
    [11] S. Stankovich, D. A. Dikin, R. D. Piner, Kevin. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Synthesis of Graphene-Based Nanosheets Via Chemical Reduction of Exfoliated Graphite Oxide, Carbon 45 (7), 1558-1565(2007).
    [12] Y. Zhang, L. Gomez, F. N. Ishikawa, A. Madaria, K. Ryu, C. Wang, A. Badmaev, C. Zhou, Comparison of Graphene Growth on Single-Crystalline and Polycrystalline Ni by Chemical Vapor Deposition, Jounal of Physical Chemistry Letters 1 (20), 3101–3107(2010).
    [13] X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, L. Colombo, R. S. Ruoff, Graphene Films with Large Domain Size by A Two-Step Chemical Vapor Deposition Process, Nano Letters 10 (11), 4328-4334(2010).
    [14] D. Geng, B. Wu, Y. Guo, L. Huang, Y. Xue, J. Chen, G. Yu, L. Jiang, W. Hu, Y. Liu, Uniform Hexagonal Graphene Flakes and Films Grown on Liquid Copper Surface, PNAS 109 (21) 7992–7996(2012).
    [15] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The Electronic Properties of Graphene, Reviews of Modern Physics 81 (1), 109 (2009).
    [16] J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, L. M. K. Vandersypen, Gate-induced Insulating State in Bilayer Graphene Devices, Nature Materials 7 (2), 151-157(2007).
    [17] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Fine Structure Constant Defines Visual Transparency of Graphene, Science 320 (5881), 1308-1308(2008).

    [18] T.H. Seo, K. J. Lee, T. S. Oh, Y. S. Lee, H. Jeong, A. H. Park, H. Kim, Y. R. Choi, E. K. Suh, Graphene Network on Indium Tin Oxide Nanodot Nodes for Transparent and Current Spreading Electrode in InGaN/GaN Light Emitting Diode, Applied Physics Letters 98, 251114(2011).
    [19] http://www.pida.org.tw/optolink/optolink_pdf/96117209.pdf
    [20] http://www.isu.edu.tw/upload/81201/48/news/postfile_43775.pdf
    [21] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, J. M. Tsai, 400-nm InGaN–GaN and InGaN–AlGaN Multiquantum Well Light-Emitting Diodes, IEEE Journal of Selected Topics in Quantum Electronics 8, 4 (2002)
    [22] http://www.tnu.edu.tw/ee/upimages/ file/Std-100/3005/透明導電薄膜.htm
    [23] ITO 透明導電薄膜:從發展與應用到製備與分析 Chemistry(The Chinese Chem. SOC., Taipei)63 (3), 409 ~ 418(2005).
    [24] http://press.nctu.edu.tw/Upload/Books/9789868439511.pdf
    [25] B. J. Kim, M. A. Mastro, J. Hite, C. R. Eddy. Jr, J. Kim, Transparent Conductive Graphene Electrode in GaN-based Ultra-Violet Light Emitting Diodes, OPTICS EXPRESS 18 (22), 23030(2010).
    [26] B. J. Kim, C. Lee, Y. H. Jung, K. H. Baik, M. A. Mastro, J. K. Hite, C. R. Eddy. Jr, J. Kim, Large-Area Transparent Conductive Few-Layer Graphene Electrode in GaN-based Ultra-Violet Light-Emitting Diodes, Applied Physics Letters 99, 143101(2011).
    [27] T. H. Seo, K. J. Lee, A. H. Park, C. H. Hong, E. K. Suh, Enhanced Light Output Power of Near UV Light Emitting Diodes with Graphene / Indium Tin Oxide Nanodot Nodes for Transparent and Current Spreading Electrode, Optics Eepress 19 (23), 23111 (2011).
    [28] B. J. Kim, G. Yang, H. Y. Kim, K. H. Baik, M. A. Mastro, J. K. Hite, C. R. E. Jr, F. Ren, S. J. Pearton, J. Kim, GaN-based Ultraviolet Light-Emitting Diodes with AuCl3-Doped Graphene Electrodes, Optics Eepress 21 (23), 29025 (2013).
    [29] T. H. Seo, S. Kim, M. J. Kim, H. Kim, E. K. Suh, Compound Ag Nanocluster-Graphene Electrodes as Transparent and Current Spreading Electrodes for Improved Light Output Power in Near-Ultraviolet Light Emitting Diodes, Journal of Physics D: Applied Physics 47, 215103 (2014).
    [30] C. Wu, F. Liu, B. Liu, Z. Zhuang, J. Dai, T. Tao, G. Zhang, Z. Xie, X. Wang, R. Zhang, Enhanced Opto-Electrical Properties of Graphene Electrode InGaN/GaN LEDs with a NiOx Inter-layer, Solid-State Electronics 109, 47–51 (2015).
    [31] G. Jo, M. Choe, C. Y. Cho, J. H. Kim, Woojin, S. Lee, W. K. Hong, T. W. Kim, S. Ju, B. H. Hong, Y. H. Kahng, T. Lee, Large-Scale Patterned Multi-Layer Graphene Films as Transparent Conducting Electrodes for GaN Light-Emitting Diodes, Nanotechnology 21, 175201 (2010).
    [32] K. K. Kim, A. Reina, Y. Shi, H, L. J. Li, Y. H. Lee, J. Kong, Enhancing the Conductivity of Transparent Graphene Films Via Doping, Nanotechnology 21, 285205 (2010).
    [33] T. H. Seo, K. J. Lee, T. S. Oh, Y. S. Lee, H. Jeong, A. H. Park, H. Kim, Y. R. Choi, E. K. Suh, Graphene Network on Indium Tin Oxide Nanodot Nodes for Transparent and Current Spreading Electrode in InGaN-GaN Light Emitting Diode, Applied Physics Letters 98, 251114 (2011).
    [34] L. C. Wang, Y. Zhang, X. Li, Z. Liu, E. Guo, X. Yi, J. Wang, H. Zhu, G. Wang, Partially Sandwiched Graphene as Transparent Conductive Layer for InGaN-Based Vertical Light Emitting Diodes, Applied Physics Letters 101, 061102 (2012).
    [35] B. J. Kim, C. Lee, M. A. Mastro, J. K. Hite, C. R. Eddy. Jr, F. Ren, S. J. Pearton, J. Kim, Buried Graphene Electrodes on GaN-Based Ultra-Violet Light-Emitting Diodes, Applied Physics Letters 101, 031108 (2012).
    [36] B. J. Kim, G. Yang, M. J. Park, J. S. Kwak, K. H. Baik, D. Kim, J. Kim, Three-Dimensional Graphene Foam-Based Transparent Conductive Electrodes in GaN-based Blue Light-Emitting Diodes, Applied Physics Letters 102, 161902 (2013).
    [37] T. H. Seo, B. K. Kim, G. U. Shin, C. Lee, M. Jong. Kim, H. Kim, E. K. Suh, Graphene-Silver Nanowire Hybrid Structure as A Transparent and Current Spreading Electrode in Ultraviolet Light Emitting Diodes, Applied Physics Letters 103, 051105 (2013).
    [38] Z. Li, J. Kang, Y. Zhang, Z. Liu, L. Wang, X. Lee, X. Li, X. Yi, H. Zhu, G. Wang, The Fabrication of GaN-based Nanorod Light-Emitting Diodes with Multilayer Graphene Transparent Electrodes, Jounal of Applied Physics 113, 234302 (2013).
    [39] T. H. Seo, G. U. Shin, B. K. Kim, C. J. Choi, C. Lee, M. J. Kim, E. K. Suh, Enhancement of Light Output Power in Ultraviolet Light Emitting Diodes Using Graphene Film on Self-Assembled Au Nanocluster by Agglomeration Process, Jounal of Applied Physics 114, 223105 (2013).
    [40] H. Meng , J. Luo, W. Wang, Z. Shi, Q. Niu, L. Dai, G. Qin, Top-Emission Organic Light-Emitting Diode with a Novel Copper/Graphene Composite Anode, Advanced Function Materials 23, 3324–3328(2013).
    [41] D. Youn, Y. J. Yu, H. K. Choi, S. H. Kim, S. Y. Choi, C. G. Choi, Graphene Transparent Electrode for Enhanced Optical Power and Thermal Stability in GaN Light-Emitting Diodes, Nanotechnology 24(7):075202 (2013).
    [42] K. Xu, C. Xu, Y. Xie, J. Deng, Y. Zhu, W. Guo, M. Mao, M. Xun, M. Chen, L. Zheng, J. Sun, GaN Nanorod Light Emitting Diodes with Suspended Graphene Transparent Electrodes Grown by Rapid Chemical Vapor Deposition, Jounal of Applied Physics 103, 222105 (2013).
    [43] C. Y. Cho, M. Choe, S. J. Lee, S. H. Hong, T. Lee, W. Lim, S. T. Kim, S. J. Park, Near-Ultraviolet Light-Emitting Diodes with Transparent Conducting Layer of Gold-Doped Multi-Layer Graphene, Jounal of Applied Physics 113, 113102(2013).
    [44] X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, S. Jie, Graphene Transparent Electrodes Grown by Rapid Chemical Vapor Deposition with Ultrathin Indium Tin Oxide Contact Layers for GaN Light Emitting Diodes, Applied Physics Letters 102, 162102 (2013).
    [45] Z. Li, J. Kang, Z. Liu, C. Du, X. Lee, X. Li, L. Wang, X. Yi, H. Zhu, G. Wang, Enhanced Performance of GaN-based Light-Emitting Diodes with Graphene/Ag Nanowires Hybrid Films, AIP Advances 3 042134(2013).
    [46] G. Lee, S. Oh, B. J. Kim, J. Kim, Improvement of Conductivity in Graphene by Ag Nanowires Under A Non-Uniform Electric Field, ECS Solid State Letters 3, 12 (2014).
    [47] S. Oh, B. J. Kim, J. Kim, Layer-by-Layer AuCl3 Doping of Stacked Graphene Films, physica status solidi (RRL) - Rapid Research Letters 8 (5), 441–444 (2014).
    [48] T. H. Seo, A. H. Park, G. H. Lee, M. J. Kim, E. K. Suh, Efficiency Enhancement of Nanorod Green Light Emitting Diodes Employing Silver Nanowire-Decorated Graphene Electrode as Current Spreading Layer, Journal of Physics D: Applied Physics 47, 31 (2014).
    [49] S. Chandramohan, K. B. Ko, Y. S. Katharria, T. Y. Kim, B. J. Cho, C. H. Hong, Performance Evaluation of GaN Light-Emitting Diodes Using Transferred Graphene as Current Spreading Layer, Jounal of Applied Physics 115, 054503 (2014).
    [50] W. C. Lai, C. N. Lin, Y. C. Lai, P. Yu, G. C. Chi, S. J. Chang, GaN-Based Light-Emitting Diodes with Graphene/Indium Tin Oxide Transparent Layer, Optics Express 22 (S2), A396-A401(2014).
    [51] J. H. Min, M. Son, S. Y. Bae, J. Y. Lee, J. Yun, M. J. Maeng, D. G. Kwon, Y. Park, J. I. Shim, M. H. Ham, D. S. Lee, Graphene Interlayer for Current Spreading Enhancement by Engineering of Barrier Height in GaN-Based Light-Emitting Diodes, Optics Express 22 (S4), A1040-A1050(2014).
    [52] S. Oh, G. Yang, J. Kim, AuCl3 Chemical Doping on Defective Graphene Layer, Jounal of Vaccum Science Technology A 33, 021502(2015).
    [53] T. H. Seo, A. H. Park, S. Park, S. Chandramohan, G. H. Lee, M. J. Kim, C. H. Hong, E. K. Suh, Improving the Graphene Electrode Performance in Ultra-Violet Light Emitting Diode Using Silver Nanowire Networks, Optical Materials Express 5 (2), 314-322 (2015).
    [54] H. L. Ge, C. Xu, K. Xu, M. Xun, J. Wang, J. Liu, Enhanced Performance of Photonic Crystal GaN Light-Emitting Diodes with Graphene Transparent Electrodes, Nanoscale Research Letters 10:103 (2015)
    [55] C. Wu, F. Liu, B. Liu, Z. Zhuang, J. Dai, T. Tao, G. Zhang, Z. Xie, X. Wang, R. Zhang, Enhanced Opto-Electrical Properties of Graphene Electrode InGaN/GaN LEDs with A NiOx Inter-Layer, Solid-State Electronics 109, 47–51 (2015).
    [56] S. Chandramohan, B. D. Ryu, T. H. Seo, H. Kim, E. K. Suh, C. H. Hong, Insights into Annealing-Induced Ohmic Contact Formation at Graphene/p-GaN Interface with A NiOx Contact Layer, Jounal of Phyics D: Applied Physics 48, 095102 (2015).
    [57] NITTO DENKO, http://www.semicorp.com/brochures/Revalpha%20Info%20Ver%20B.pdf
    [58] 宋健民, 2012, 石墨烯透明电极、石墨烯发光二极管及其制备方法, CN Patent NO. 102386296, US Patent NO. 2012049239A1.
    [59] 伊晓燕, 张逸韵, 汪炼成, 王国宏, 马骏,中国科学院半导体研究所,2012,应用石墨烯薄膜作为载流子注入层的垂直结构发光二极管 CN Patent NO. 102751407.
    [60] 伊晓燕, 张逸韵, 汪炼成, 王国宏, 马骏, 中国科学院半导体研究所, 2012, 应用石墨烯薄膜作为载流子注入层的垂直结构发光二极管 CN Patent NO. 102751408 A.

    [61] D. S. Lee, J. P. Shim, S. J. Park, M. H. Choe, D. H. Kim, T. H. Lee, Gwangju, Institute of Science and Technology, 2013, Light Emitting Diode and Method of Manufacturing the Same, US Patent NO. 20130285012 A1.
    [62] 徐晨, 许坤, 孙捷, 邓军, 朱彦旭, 毛明明, 解意洋, 郑雷, 北京工业大学, 2015, 基于石墨烯薄膜的透明电极的制备方法, CN Patent NO. 103078036.
    [63] 魏洋, 范守善, 清华大学, 鸿富锦精密工业有限公司(鴻海), 2013, 发光二极管 TW Patent NO. 201344969A, CN Patent NO. 103378235, US Patent NO. 8823045B2, US Patent NO. 2014306256A1.
    [64] Y. Wei, S. S. Fan, Tsinghua University, Hon Hai Precision Industry Co., Ltd. 2014, US Patent NO. 8816374 B2.

    [65] D. S. Lee, J. P. Shim, S. J. Park, M.H. Choe, D. H. Kim, T. H. Lee, Gwangju, Institute of Science and Technology, 2014, US Patent NO. 8779411 B2.
    [66] http://news.discuss.com.hk/viewthread.php?tid=25136016

    無法下載圖示 本全文未授權公開
    QR CODE