簡易檢索 / 詳目顯示

研究生: 林玄原
Hsuan-Yuan Lin
論文名稱: 脊髓小腦運動失調症之族群遺傳分析與CTG三核苷重複擴增的分子致病研究
Genetic studies of spinocereballar ataxias and molecular impacts of CTG trinucleotide expansion
指導教授: 李桂楨
Lee, Guey-Jen
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 116
中文關鍵詞: 脊髓小腦運動失調症三核苷重複擴增肌強直症反意RNA開放性解讀架構基因轉殖小鼠微陣列分析二維螢光差異膠體電泳
英文關鍵詞: Spinocerebellar ataxia, trinucleotide repeat expansion, myotonic dystrophy, anti-snese RNA, open reading frame, transgenic mouse, microarray analysis, 2-D DIGE
論文種類: 學術論文
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脊髓小腦運動失調症(SCAs)為一群顯性遺傳的神經退化性疾病,目前已確定的各型中,絕大多數是由致病基因中的三核苷酸或五核苷酸重複擴增所致。本論文首先建立了臺灣地區族群的SCAs致病基因之遺傳資料庫,並且檢測尚未確定的病例。在我們的檢測結果中,臺灣SCAs族群當中最多的為SCA3;且臺灣的族群分佈頻率與日本及高加索人群極為相似。此外,我們亦發現五名帕金森氏症患者具有SCA8或是SCA17基因的突變 ,顯示這兩種基因的突變可能以非小腦症狀的表現型來顯現。
    SCA8與其他的SCAs不同之處在於其雖然也是由三核苷酸重複擴增所造成,但其致病基因中的三核苷酸為CTG,且位於非轉譯區,而非像其他型SCAs絕大多數為轉譯區中的CAG擴增。此外,SCA8基因所轉錄RNA的5端,與KLHL1基因之mRNA的5端互補,即為KLHL1基因的反意RNA。本論文的第二部份為利用細胞與基因轉殖小鼠模式來探討SCA8的可能致病機轉。在細胞模式中,我們發現CTG擴增的SCA8對於KLHL1基因表現的抑制較不若正常SCA8來得強;此外,雖然之前的研究認為SCA8基因並不會進行轉譯,但我們的研究證實了SCA8基因中的開放解讀架構(open reading frame,ORF)確實可以轉譯成蛋白質,且CTG擴增的SCA8與ORF1都會形成細胞內不可溶的包涵體。因此,SCA8的反意調控與可轉譯的開放解讀架構都可能與致病過程相關。我們亦建立SCA8的基因轉殖小鼠模式,雖然行為測定與小腦組織形態上都未發現異狀,但卻出現四肢緊抱(clasping)的現象。因此,此現象或許可提供作為致病機轉或是藥物研究之指標。

    Spinocerebellar ataxias (SCAs) comprise a heterogeneous neurodegenerative disorders that are dominantly inherited. Among the identified SCAs, the trinucleotide or pentanucausing mutations have been shown to cause most SCAs. However, the prevalence of SCAs varies among populations. In the first part, in order to set up a database of the trinucleotide- and pentanucleotide-repeat expansions leading to SCA, we have assessed the repeat size at the SCA1, SCA2, MJD/SCA3, SCA6, SCA8, SCA10, SCA12, SCA17, and DRPLA loci. MJD/SCA3 (46%) was the most common autosomal dominant SCA in the Taiwanese cohort, followed by SCA6 (18%) and SCA1 (3%). The frequencies of large normal alleles are closely associated with the prevalence of SCA1, SCA2, MJD/SCA3, SCA6, and DRPLA among Taiwanese, Japanese, and Caucasians. In addition, abnormal expansion of SCA8 and SAC17 genes were detected in patients with PD, suggesting these two mutations might manifest as non-cerebellar symptoms.
    Unlike most SCAs caused by expansion of a coding CAG trinucleotide repeat, SCA8 has been shown to link to CTG triplet repeat expansion in the 3' untranslated region of SCA8 gene on 13q21. The 5' end of the SCA8 transcript overlaps the transcription and translation start sites, as well as the first splice donor sequence of the Kelch-like 1 (KLHL1) gene of the complementary strand. The aim of the other part is to uncover the plausible mechanisms using cell and transgenic mouse as model systems. In vitro studies demonstrated that the suppressive activity for KLHL1 was significantly different between SCA8 transcripts carrying 0 and 157 combined repeats, and that SCA8 RNA was translatable. Both the expressed GFP-tagged ORF1 and polyleucine-expansion ORF3 proteins formed aggregates. Thus, SCA8 trans effects and polyleucine-containing aggregateds might be correlated with the pathogenesis of SCA8. In addition, the SCA8 overexpression transgenic mouse model showed no difference of motor activity and histopathological morphology of Purkinje cells between transgenic mice and their control littermates. However, hind-limb clasping was observed in transgenic mice with 157 repeats during tail suspension. Although no marked pathological phenotypes were found in our model, the clasping phenotype might be used to be a characteristic evaluation index for drugs screening as in Huntington’s disease mice.

    Index.....I Abstract (Chinese).....III Abstract.....V List of figures and tables.....VII Introduction.....1 Spinocerebellar ataxia type 1 (SCA1).....3 Spinocerebellar ataxia type 2 (SCA2).....3 Spinocerebellar ataxia type 3 (SCA3).....4 Spinocerebellar ataxia type 6 (SCA6).....5 Spinocerebellar ataxia type 7 (SCA7).....5 Spinocerebellar ataxia type 8 (SCA8).....6 Spinocerebellar ataxia type 10 (SCA10).....6 Spinocerebellar ataxia type 12 (SCA12).....7 Spinocerebellar ataxia type 17 (SCA17).....7 Organization of SCA8 gene.....9 The role of KLHL1 protein.....10 Natural antisense transcripts.....11 Myotonic dystrophy type 1 (DM1).....11 Internal ribosome entry segment (IRES).....12 Animal models of SCA8.....13 Aims.....15 Materials and methods.....16 Subjects.....16 Genomic DNA extraction.....16 Polymerase chain reaction (PCR) and genotyping.....17 Gel extraction.....17 Statistical analyses.....18 SCA8 cDNA cloning.....18 Site-directed mutagenesis.....19 pEF-SCA8 constructs.....19 KLHL1 cDNA cloning and pEF-KLHL1-EGFP construct.....20 pCMV-(CAG)36-IRES-EGFP construct.....20 pCMV-ORF1-EGFP construct.....20 pCMV-SCA8-EGFP constructs.....21 pCMV-K-ORF3-EGFP constructs.....21 Preparation of electro-competent cells.....21 Ligation.....22 Electroporation.....22 Minipreparation of plasmid DNA.....23 Midipreparation of plasmid DNA.....23 Cell cultivation.....24 Transfection.....24 Fluorescence activated cell sorting (FACS) analysis.....25 Immunofluorescence analysis.....25 Cell lysate preparation.....26 Cytoplasmic and nuclear proteins preparation.....27 Western blotting (immunoblotting).....27 RNA isolation.....28 Establishment of SCA8 stably expressing Flp-In T-REx 293 cell lines.....29 Cell proliferation assessment (WST-1 assay).....29 Transgene construction and SCA8 transgenic mouse generation.....30 Transgenic mouse genotyping.....30 Characterization of transgene copy numbers of transgenic mouse lines.....31 RNA isolation from mouse brain tissues and reverse transcription-polymerase chain reaction (RT-PCR).....31 Rotarod test.....31 Immunohistochemical analysis.....32 RNA cleanup.....33 Microarray analysis.....33 Real-time RT-PCR (Quantitative RT- PCR).....34 Protein samples preparation for proteomic analysis.....35 Minimal labeling with CyDye Fluors for 2-D difference gel electrophoresis (DIGE).....35 IPG strip rehydration and first-dimension isoelectric focusing (IEF).....36 Second-dimension SDS-PAGE.....36 Gel staining with SYPRO Ruby.....37 Image analysis.....37 In-gel digestion.....37 Mass Spectrometry.....38 Results.....39 Trinucleotide or pentanucleotide repeat distributions.....39 Frequency of SCAs and genetic and clinical features of patients.....39 Frequency of large normal alleles.....40 SCA8 alleles with 75 to 92 repeats in PD patients.....40 SCA17 allele with 46 repeats in PD patient.....41 Regulation of KLHL1 and CAG repeat-containing RNA expression by SCA8.....41 SCA8 encodes translable ORF1 and ORF3.....43 ORF1 and expanded polyleucine-containing ORF3 proteins form aggregates.....44 Aggregated ORF1 and ORF3 proteins are localized in both nuclei and cytoplasm.....44 Generation and characterization of isogenic and inducible SCA8 cell lines.....45 Generation and characterization of SCA8 transgenic mice.....47 Expression of SCA8 transcripts in SCA8 transgenic lines.....47 Behavior assessment of transgenic mice by performance on the accelerating rotarod.....48 SCA8 transgene does not cause the morphological abnormalities of Purkinje cells.....48 SCA8 transgenic mice exhibit the clasping phenotype.....49 Proteomic analysis of SCA8 transgenic mice.....50 Discussion.....51 References.....62 Figure........84 Table.....107

    洪葦苓 (2005) 第八型脊髓小腦運動失調症:CTG三核苷重複的遺傳分析與細胞模式研究。國立臺灣師範大學生命科學系碩士論文
    項聖文 (2005) 第八型脊髓小腦運動失調症之果蠅模式建立與致病機制研究。國立臺灣師範大學生命科學系碩士論文
    Alonso I, Costa C, Gomes A, Ferro A, Seixas AI, Silva S, Cruz VT, Coutinho P, Sequeiros J, Silveira I (2005) A novel H101Q mutation causes PKCgamma loss in spinocerebellar ataxia type 14. J Hum Genet 50: 523-9
    Aromolaran KA, Benzow KA, Koob MD, Piedras-Renteria ES (2007) The Kelch-like protein 1 modulates P/Q-type calcium current density. Neuroscience 145: 841-50Banfi S, Servadio A, Chung MY, Kwiatkowski TJ, Jr., McCall AE, Duvick LA, Shen Y, Roth EJ, Orr HT, Zoghbi HY (1994) Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nat Genet 7: 513-20
    Barski JJ, Dethleffsen K, Meyer M (2000) Cre recombinase expression in cerebellar Purkinje cells. Genesis 28: 93-8Benomar A, Krols L, Stevanin G, Cancel G, LeGuern E, David G, Ouhabi H, Martin JJ, Durr A, Zaim A, et al. (1995) The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12-p21.1. Nat Genet 10: 84-8
    Benzow KA, Koob MD (2002) The KLHL1-antisense transcript ( KLHL1AS) is evolutionarily conserved. Mamm Genome 13: 134-41
    Berrebi AS, Oberdick J, Sangameswaran L, Christakos S, Morgan JI, Mugnaini E (1991) Cerebellar Purkinje cell markers are expressed in retinal bipolar neurons. J Comp Neurol 308: 630-49
    Berul CI, Maguire CT, Aronovitz MJ, Greenwood J, Miller C, Gehrmann J, Housman D, Mendelsohn ME, Reddy S (1999) DMPK dosage alterations result in atrioventricular conduction abnormalities in a mouse myotonic dystrophy model. J Clin Invest 103: R1-7
    Blin-Wakkach C, Lezot F, Ghoul-Mazgar S, Hotton D, Monteiro S, Teillaud C, Pibouin L, Orestes-Cardoso S, Papagerakis P, Macdougall M, Robert B, Berdal A (2001) Endogenous Msx1 antisense transcript: In vivo and in vitro evidences, structure, and potential involvement in skeleton development in mammals. Proc Natl Acad Sci U S A 98: 7336-41
    Buxton J, Shelbourne P, Davies J, Jones C, Van Tongeren T, Aslanidis C, de Jong P, Jansen G, Anvret M, Riley B, et al. (1992) Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature 355: 547-8Brusse E, de Koning I, Maat-Kievit A, Oostra BA, Heutink P, van Swieten JC (2006) Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord 21: 396-401
    Chai Y, Berke SS, Cohen RE, Paulson HL (2004) Poly-ubiquitin binding by the polyglutamine disease protein ataxin-3 links its normal function to protein surveillance pathways. J Biol Chem 279: 3605-11
    Chung S, Andersson T, Sonntag KC, Bjorklund L, Isacson O, Kim KS (2002) Analysis of different promoter systems for efficient transgene expression in mouse embryonic stem cell lines. Stem Cells 20: 139-45
    Cooper JK, Schilling G, Peters MF, Herring WJ, Sharp AH, Kaminsky Z, Masone J, Khan FA, Delanoy M, Borchelt DR, Dawson VL, Dawson TM, Ross CA (1998) Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum Mol Genet 7: 783-90
    Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19: 148-54
    Cummings CJ, Reinstein E, Sun Y, Antalffy B, Jiang Y, Ciechanover A, Orr HT, Beaudet AL, Zoghbi HY (1999) Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24: 879-92
    David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel JL, Brice A (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17: 65-70
    Day JW, Schut LJ, Moseley ML, Durand AC, Ranum LP (2000) Spinocerebellar ataxia type 8: clinical features in a large family. Neurology 55: 649-57
    de Haro M, Al-Ramahi I, De Gouyon B, Ukani L, Rosa A, Faustino NA, Ashizawa T, Cooper TA, Botas J (2006) MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1. Hum Mol Genet 15: 2138-45
    Dolnick BJ (1993) Cloning and characterization of a naturally occurring antisense RNA to human thymidylate synthase mRNA. Nucleic Acids Res 21: 1747-52
    Dorsman JC, Pepers B, Langenberg D, Kerkdijk H, Ijszenga M, den Dunnen JT, Roos RA, van Ommen GJ (2002) Strong aggregation and increased toxicity of polyleucine over polyglutamine stretches in mammalian cells. Hum Mol Genet 11: 1487-96
    Donaldson KM, Li W, Ching KA, Batalov S, Tsai CC, Joazeiro CA (2003) Ubiquitin-mediated sequestration of normal cellular proteins into polyglutamine aggregates. Proc Natl Acad Sci U S A 100: 8892-7
    Ebralidze A, Wang Y, Petkova V, Ebralidse K and Junghans RP (2004) RNA leaching of transcription factors disrupts transcription in myotonic dystrophy. Science 303: 383-7
    Fardaei M, Rogers MT, Thorpe HM, Larkin K, Hamshere MG, Harper PS, Brook JD (2002) Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum Mol Genet 11: 805-14
    Fernandez J, Yaman I, Mishra R, Merrick WC, Snider MD, Lamers WH, Hatzoglou M (2001) Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. J Biol Chem 276: 12285-91
    Fernandez J, Yaman I, Sarnow P, Snider MD, Hatzoglou M (2002) Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor eIF2alpha. J Biol Chem 277: 19198-205
    Ferrone F (1999) Analysis of protein aggregation kinetics. Methods Enzymol 309: 256-74
    Fujigasaki H, Martin JJ, De Deyn PP, Camuzat A, Deffond D, Stevanin G, Dermaut B, Van Broeckhoven C, Durr A, Brice A (2001a) CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain 124: 1939-47
    Fujigasaki H, Verma IC, Camuzat A, Margolis RL, Zander C, Lebre AS, Jamot L, Saxena R, Anand I, Holmes SE, Ross CA, Durr A, Brice A (2001b) SCA12 is a rare locus for autosomal dominant cerebellar ataxia: a study of an Indian family. Ann Neurol 49: 117-21
    Furtado S, Farrer M, Tsuboi Y, Klimek ML, de la Fuente-Fernandez R, Hussey J, Lockhart P, Calne DB, Suchowersky O, Stoessl AJ, Wszolek ZK (2002) SCA-2 presenting as parkinsonism in an Alberta family: clinical, genetic, and PET findings. Neurology 59: 1625-7
    Gong CX, Lidsky T, Wegiel J, Zuck L, Grundke-Iqbal I, Iqbal K (2000) Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease. J Biol Chem 275: 5535-44
    Gostout B, Liu Q, Sommer SS (1993) "Cryptic" repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes. Am J Hum Genet 52: 1182-90
    Grewal RP, Tayag E, Figueroa KP, Zu L, Durazo A, Nunez C, Pulst SM (1998) Clinical and genetic analysis of a distinct autosomal dominant spinocerebellar ataxia. Neurology 51: 1423-6
    Grewal RP, Achari M, Matsuura T, Durazo A, Tayag E, Zu L, Pulst SM, Ashizawa T (2002) Clinical features and ATTCT repeat expansion in spinocerebellar ataxia type 10. Arch Neurol 59: 1285-90
    Gwinn-Hardy K, Chen JY, Liu HC, Liu TY, Boss M, Seltzer W, Adam A, Singleton A, Koroshetz W, Waters C, Hardy J, Farrer M (2000) Spinocerebellar ataxia type 2 with parkinsonism in ethnic Chinese. Neurology 55: 800-5
    Gwinn-Hardy K, Singleton A, O'Suilleabhain P, Boss M, Nicholl D, Adam A, Hussey J, Critchley P, Hardy J, Farrer M (2001) Spinocerebellar ataxia type 3 phenotypically resembling parkinson disease in a black family. Arch Neurol 58: 296-9
    Hamshere MG, Brook JD (1996) Myotonic dystrophy, knockouts, warts and all. Trends Genet 12: 332-4
    Handa V, Goldwater D, Stiles D, Cam M, Poy G, Kumari D, Usdin K (2005) Long CGG-repeat tracts are toxic to human cells: implications for carriers of Fragile X premutation alleles. FEBS Lett 579: 2702-8
    Harley HG, Brook JD, Rundle SA, Crow S, Reardon W, Buckler AJ, Harper PS, Housman DE, Shaw DJ (1992) Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 355: 545-6
    Harper JD, Lansbury PT, Jr. (1997) Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66: 385-407
    He Y, Zu T, Benzow KA, Orr HT, Clark HB, Koob MD (2006) Targeted deletion of a single Sca8 ataxia locus allele in mice causes abnormal gait, progressive loss of motor coordination, and Purkinje cell dendritic deficits. J Neurosci 26: 9975-82
    Hellen CU, Sarnow P (2001) Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15: 1593-612
    Helmlinger D, Hardy S, Sasorith S, Klein F, Robert F, Weber C, Miguet L, Potier N, Van-Dorsselaer A, Wurtz JM, Mandel JL, Tora L, Devys D (2004) Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes. Hum Mol Genet 13: 1257-65
    Hennecke M, Kwissa M, Metzger K, Oumard A, Kroger A, Schirmbeck R, Reimann J, Hauser H (2001) Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucleic Acids Res 29: 3327-34
    Holmberg M, Duyckaerts C, Durr A, Cancel G, Gourfinkel-An I, Damier P, Faucheux B, Trottier Y, Hirsch EC, Agid Y, Brice A (1998) Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet 7: 913-8
    Holmes SE, O'Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, Kwak NG, Ingersoll-Ashworth RG, Sherr M, Sumner AJ, Sharp AH, Ananth U, Seltzer WK, Boss MA, Vieria-Saecker AM, Epplen JT, Riess O, Ross CA, Margolis RL (1999) Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nat Genet 23: 391-2
    Holmes SE, O'Hearn E, Margolis RL (2003) Why is SCA12 different from other SCAs? Cytogenet Genome Res 100: 189-97
    Houseley JM, Wang Z, Brock GJ, Soloway J, Artero R, Perez-Alonso M, O'Dell KM, Monckton DG (2005) Myotonic dystrophy associated expanded CUG repeat muscleblind positive ribonuclear foci are not toxic to Drosophila. Hum Mol Genet 14: 873-83
    Huez I, Creancier L, Audigier S, Gensac MC, Prats AC, Prats H (1998) Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol 18: 6178-90
    Huynh DP, Yang HT, Vakharia H, Nguyen D, Pulst SM (2003) Expansion of the polyQ repeat in ataxin-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death. Hum Mol Genet 12: 1485-96
    Huynh DP, Nguyen DT, Pulst-Korenberg JB, Brice A, Pulst SM (2007) Parkin is an E3 ubiquitin-ligase for normal and mutant ataxin-2 and prevents ataxin-2-induced cell death. Exp Neurol 203: 531-41
    Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, et al. (2006) Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 38: 184-90
    Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, Weber C, Mandel JL, Cancel G, Abbas N, Durr A, Didierjean O, Stevanin G, Agid Y, Brice A (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 14: 285-91
    Izumi Y, Maruyama H, Oda M, Morino H, Okada T, Ito H, Sasaki I, Tanaka H, Komure O, Udaka F, Nakamura S, Kawakami H (2003) SCA8 repeat expansion: large CTA/CTG repeat alleles are more common in ataxic patients, including those with SCA6. Am J Hum Genet 72: 704-9
    Juvonen V, Hietala M, Paivarinta M, Rantamaki M, Hakamies L, Kaakkola S, Vierimaa O, Penttinen M, Savontaus ML (2000) Clinical and genetic findings in Finnish ataxia patients with the spinocerebellar ataxia 8 repeat expansion. Ann Neurol 48: 354-61
    Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, et al. (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8: 221-8
    Kaytor MD, Duvick LA, Skinner PJ, Koob MD, Ranum LP, Orr HT (1999) Nuclear localization of the spinocerebellar ataxia type 7 protein, ataxin-7. Hum Mol Genet 8: 1657-64
    Kim YK, Jang SK (2002) Continuous heat shock enhances translational initiation directed by internal ribosomal entry site. Biochem Biophys Res Commun 297: 224-31
    Kitsu M, Izumi T, Hara M, Mitsuishi Y, Kobayashi N, Fukuyama Y (1992) [Progressive cerebellar ataxia with diencephalic symptoms (Toyokura)--a case report]. No To Hattatsu 24: 273-7
    Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Takahashi H, Kondo R, Ishikawa A, Hayashi T, et al. (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 6: 9-13
    Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 8: 2047-53
    Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, Ranum LP (1999) An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 21: 379-84
    Koshy B, Matilla T, Burright EN, Merry DE, Fischbeck KH, Orr HT, Zoghbi HY (1996) Spinocerebellar ataxia type-1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde-3-phosphate dehydrogenase. Hum Mol Genet 5: 1311-8
    Kozak M (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266: 19867-70
    Lai EC (2002) Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30: 363-4
    Li AW, Seyoum G, Shiu RP, Murphy PR (1996) Expression of the rat BFGF antisense RNA transcript is tissue-specific and developmentally regulated. Mol Cell Endocrinol 118: 113-23
    Lin HY, Shiau HC, Chen CM, Hsieh-Li HM, Lee-Chen GJ, Su MT. Spinocerebellar ataxia type 8 RNA has internal ribosome entry segment activity. BMC Mol Biol: submitted
    Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, Neville C, Narang M, Barcelo J, O'Hoy K, et al. (1992) Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene. Science 255: 1253-5
    Mangiarini L, Sathasivam K, Mahal A, Mott R, Seller M, Bates GP (1997) Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation. Nat Genet 15: 197-200Marz P, Probst A, Lang S, Schwager M, Rose-John S, Otten U, Ozbek S (2004) Ataxin-10, the spinocerebellar ataxia type 10 neurodegenerative disorder protein, is essential for survival of cerebellar neurons. J Biol Chem 279: 35542-50
    Marz P, Stetefeld J, Bendfeldt K, Nitsch C, Reinstein J, Shoeman RL, Dimitriades-Schmutz B, Schwager M, Leiser D, Ozcan S, Otten U, Ozbek S (2006) Ataxin-10 interacts with O-linked beta-N-acetylglucosamine transferase in the brain. J Biol Chem 281: 20263-70
    Masino L, Musi V, Menon RP, Fusi P, Kelly G, Frenkiel TA, Trottier Y, Pastore A (2003) Domain architecture of the polyglutamine protein ataxin-3: a globular domain followed by a flexible tail. FEBS Lett 549: 21-5
    Matilla A, Koshy BT, Cummings CJ, Isobe T, Orr HT, Zoghbi HY (1997) The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature 389: 974-8
    Matilla A, Gorbea C, Einum DD, Townsend J, Michalik A, van Broeckhoven C, Jensen CC, Murphy KJ, Ptacek LJ, Fu YH (2001) Association of ataxin-7 with the proteasome subunit S4 of the 19S regulatory complex. Hum Mol Genet 10: 2821-31
    Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, Khajavi M, McCall AE, Davis CF, Zu L, Achari M, Pulst SM, Alonso E, Noebels JL, Nelson DL, Zoghbi HY, Ashizawa T (2000) Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 26: 191-4
    McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev 21: 195-218
    McMahon SJ, Pray-Grant MG, Schieltz D, Yates JR, 3rd, Grant PA (2005) Polyglutamine-expanded spinocerebellar ataxia-7 protein disrupts normal SAGA and SLIK histone acetyltransferase activity. Proc Natl Acad Sci U S A 102: 8478-82
    Miyashita T, Nagao K, Ohmi K, Yanagisawa H, Okamura-Oho Y, Yamada M (1998) Intracellular aggregate formation of dentatorubral-pallidoluysian atrophy (DRPLA) protein with the extended polyglutamine. Biochem Biophys Res Commun 249: 96-102
    Moseley ML, Benzow KA, Schut LJ, Bird TD, Gomez CM, Barkhaus PE, Blindauer KA, Labuda M, Pandolfo M, Koob MD, Ranum LP (1998) Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology 51: 1666-71
    Moseley ML, Schut LJ, Bird TD, Koob MD, Day JW, Ranum LP (2000) SCA8 CTG repeat: en masse contractions in sperm and intergenerational sequence changes may play a role in reduced penetrance. Hum Mol Genet 9: 2125-30
    Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS, Chen G, Weatherspoon MR, Clark HB, Ebner TJ, Day JW, Ranum LP (2006) Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet 38: 758-69
    Mutsuddi M, Marshall CM, Benzow KA, Koob MD, Rebay I (2004) The spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with staufen in Drosophila. Curr Biol 14: 302-8
    Mutsuddi M, Rebay I (2005) Molecular genetics of spinocerebellar ataxia type 8 (SCA8). RNA Biol 2: 49-52
    Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10: 1441-8
    Narang MA, Waring JD, Sabourin LA, Korneluk RG (2000) Myotonic dystrophy (DM) protein kinase levels in congenital and adult DM patients. Eur J Hum Genet 8: 507-12
    Nemes JP, Benzow KA, Moseley ML, Ranum LP, Koob MD (2000) The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Hum Mol Genet 9: 1543-51
    Nordquist DT, Kozak CA, Orr HT (1988) cDNA cloning and characterization of three genes uniquely expressed in cerebellum by Purkinje neurons. J Neurosci 8: 4780-9
    O'Callaghan JP, Rogers TS, Rodman LE, Page JG (1996) Acute and chronic administration of ibogaine to the rat results in astrogliosis that is not confined to the cerebellar vermis. Ann N Y Acad Sci 801: 205-16
    O'Hearn E, Holmes SE, Calvert PC, Ross CA, Margolis RL (2001) SCA-12: Tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion. Neurology 56: 299-303
    Oberdick J, Levinthal F, Levinthal C (1988) A Purkinje cell differentiation marker shows a partial DNA sequence homology to the cellular sis/PDGF2 gene. Neuron 1: 367-76
    Oberdick J, Smeyne RJ, Mann JR, Zackson S, Morgan JI (1990) A promoter that drives transgene expression in cerebellar Purkinje and retinal bipolar neurons. Science 248: 223-6
    Oma Y, Kino Y, Sasagawa N, Ishiura S (2004) Intracellular localization of homopolymeric amino acid-containing proteins expressed in mammalian cells. J Biol Chem 279: 21217-22
    Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, Ferrari MD, Frants RR (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87: 543-52
    Orr HT, Chung MY, Banfi S, Kwiatkowski TJ, Jr., Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4: 221-6
    Orr MS, Reinhold W, Yu L, Schreiber-Agus N, O'Connor PM (1998) An important role for the retinoblastoma protein in staurosporine-induced G1 arrest in murine embryonic fibroblasts. J Biol Chem 273: 3803-7
    Otten AD, Tapscott SJ (1995) Triplet repeat expansion in myotonic dystrophy alters the adjacent chromatin structure. Proc Natl Acad Sci USA 92: 5465-9
    Palhan VB, Chen S, Peng GH, Tjernberg A, Gamper AM, Fan Y, Chait BT, La Spada AR, Roeder RG (2005) Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc Natl Acad Sci U S A 102: 8472-7
    Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH, Das SS, Vig P, Mandel JL, Fischbeck KH, Pittman RN (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19: 333-44
    Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334: 320-5
    Prescott EM, Proudfoot NJ (2002) Transcriptional collision between convergent genes in budding yeast. Proc Natl Acad Sci USA 99: 8796-801
    Price NE, Mumby MC (1999) Brain protein serine/threonine phosphatases. Curr Opin Neurobiol 9: 336-42
    Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, Pearlman S, Starkman S, Orozco-Diaz G, Lunkes A, DeJong P, Rouleau GA, Auburger G, Korenberg JR, Figueroa C, Sahba S (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14: 269-76
    Ragothaman M, Sarangmath N, Chaudhary S, Khare V, Mittal U, Sharma S, Komatireddy S, Chakrabarti S, Mukerji M, Juyal RC, Thelma BK, Muthane UB (2004) Complex phenotypes in an Indian family with homozygous SCA2 mutations. Ann Neurol 55: 130-3
    Rasmussen A, Matsuura T, Ruano L, Yescas P, Ochoa A, Ashizawa T, Alonso E (2001) Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol 50: 234-9
    Reid SJ, Rees MI, van Roon-Mom WM, Jones AL, MacDonald ME, Sutherland G, During MJ, Faull RL, Owen MJ, Dragunow M, Snell RG (2003) Molecular investigation of TBP allele length: a SCA17 cellular model and population study. Neurobiol Dis 13: 37-45
    Reid SJ, van Roon-Mom WM, Wood PC, Rees MI, Owen MJ, Faull RL, Dragunow M, Snell RG (2004) TBP, a polyglutamine tract containing protein, accumulates in Alzheimer's disease. Brain Res Mol Brain Res 125: 120-8
    Robinson DN, Cooley L (1997) Drosophila kelch is an oligomeric ring canal actin organizer. J Cell Biol 138: 799-810
    Sasagawa N, Takahashi N, Suzuki K Ishiura S (1999) An expanded CTG trinucleotide repeat causes trans RNA interference: a new hypothesis for the pathogenesis of myotonic dystrophy. Biochem Biophys Res Commun 264: 76-80
    Scherzinger E, Lurz R, Turmaine M, Mangiarini L, Hollenbach B, Hasenbank R, Bates GP, Davies SW, Lehrach H, Wanker EE (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90: 549-58
    Seng S, Avraham HK, Jiang S, Venkatesh S, Avraham S (2006) KLHL1/MRP2 mediates neurite outgrowth in a glycogen synthase kinase 3beta-dependent manner. Mol Cell Biol 26: 8371-84
    Shan DE, Soong BW, Sun CM, Lee SJ, Liao KK, Liu RS (2001) Spinocerebellar ataxia type 2 presenting as familial levodopa-responsive parkinsonism. Ann Neurol 50: 812-5
    Shaw G, Morse S, Ararat M, Graham FL (2002) Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. Faseb J 16: 869-71
    Sherrill KW, Byrd MP, Van Eden ME, Lloyd RE (2004) BCL-2 translation is mediated via internal ribosome entry during cell stress. J Biol Chem 279: 29066-74
    Silveira I, Alonso I, Guimaraes L, Mendonca P, Santos C, Maciel P, Fidalgo De Matos JM, Costa M, Barbot C, Tuna A, Barros J, Jardim L, Coutinho P, Sequeiros J (2000) High germinal instability of the (CTG)n at the SCA8 locus of both expanded and normal alleles. Am J Hum Genet 66: 830-40
    Silveira I, Miranda C, Guimaraes L, Moreira MC, Alonso I, Mendonca P, Ferro A, Pinto-Basto J, Coelho J, Ferreirinha F, Poirier J, Parreira E, Vale J, Januario C, Barbot C, Tuna A, Barros J, Koide R, Tsuji S, Holmes SE, Margolis RL, Jardim L, Pandolfo M, Coutinho P, Sequeiros J (2002) Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Arch Neurol 59: 623-9
    Skinner PJ, Koshy BT, Cummings CJ, Klement IA, Helin K, Servadio A, Zoghbi HY, Orr HT (1997) Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 389: 971-4
    Sobrido MJ, Cholfin JA, Perlman S, Pulst SM, Geschwind DH (2001) SCA8 repeat expansions in ataxia: a controversial association. Neurology 57: 1310-2
    Sonenberg N (1994) Regulation of translation and cell growth by eIF-4E. Biochimie 76: 839-46
    Soong BW, Lu YC, Choo KB, Lee HY (2001) Frequency analysis of autosomal dominant cerebellar ataxias in Taiwanese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Arch Neurol 58: 1105-9
    Srivastava AK, Choudhry S, Gopinath MS, Roy S, Tripathi M, Brahmachari SK, Jain S (2001) Molecular and clinical correlation in five Indian families with spinocerebellar ataxia 12. Ann Neurol 50: 796-800
    Stevanin G, Fujigasaki H, Lebre AS, Camuzat A, Jeannequin C, Dode C, Takahashi J, San C, Bellance R, Brice A, Durr A (2003) Huntington's disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain 126: 1599-603
    Stevanin G, Hahn V, Lohmann E, Bouslam N, Gouttard M, Soumphonphakdy C, Welter ML, Ollagnon-Roman E, Lemainque A, Ruberg M, Brice A, Durr A (2004) Mutation in the catalytic domain of protein kinase C gamma and extension of the phenotype associated with spinocerebellar ataxia type 14. Arch Neurol 61: 1242-8
    Stevanin G, Herman A, Durr A, Jodice C, Frontali M, Agid Y, Brice A (2000) Are (CTG)n expansions at the SCA8 locus rare polymorphisms? Nat Genet 24: 213; author reply 215
    Stoneley M, Willis AE (2004) Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23: 3200-7
    Takano H, Cancel G, Ikeuchi T, Lorenzetti D, Mawad R, Stevanin G, Didierjean O, Durr A, Oyake M, Shimohata T, Sasaki R, Koide R, Igarashi S, Hayashi S, Takiyama Y, Nishizawa M, Tanaka H, Zoghbi H, Brice A, Tsuji S (1998) Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations. Am J Hum Genet 63: 1060-6
    Taneja KL, McCurrach M, Schalling M, Housman D, Singer RH (1995) Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J Cell Biol 128:995-1002
    Tang B, Liu C, Shen L, Dai H, Pan Q, Jing L, Ouyang S, Xia J (2000) Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch Neurol 57: 540-4
    Tazon B, Badenas C, Jimenez L, Munoz E, Mila M (2002) SCA8 in the Spanish population including one homozygous patient. Clin Genet 62: 404-9
    Toru S, Murakoshi T, Ishikawa K, Saegusa H, Fujigasaki H, Uchihara T, Nagayama S, Osanai M, Mizusawa H, Tanabe T (2000) Spinocerebellar ataxia type 6 mutation alters P-type calcium channel function. J Biol Chem 275: 10893-8

    Tufarelli C, Stanley JA, Garrick D, Sharpe JA, Ayyub H, Wood WG, Higgs DR (2003) Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 34: 157-65
    Uchihara T, Duyckaerts C, Iwabuchi K, Iwata M, Yagishita S, Hauw JJ (2004) Was the ataxia of Pierre Marie Machado-Joseph disease?: A reappraisal based on the last autopsy case from la Salpetriere Hospital. Arch Neurol 61: 784-90
    van Dellen A, Deacon R, York D, Blakemore C, Hannan AJ (2001) Anterior cingulate cortical transplantation in transgenic Huntington's disease mice. Brain Res Bull 56: 313-8
    van de Warrenburg BP, Verbeek DS, Piersma SJ, Hennekam FA, Pearson PL, Knoers NV, Kremer HP, Sinke RJ (2003) Identification of a novel SCA14 mutation in a Dutch autosomal dominant cerebellar ataxia family. Neurology 61: 1760-5
    Vandaele S, Nordquist DT, Feddersen RM, Tretjakoff I, Peterson AC, Orr HT (1991) Purkinje cell protein-2 regulatory regions and transgene expression in cerebellar compartments. Genes Dev 5: 1136-48
    Vig PJ, Subramony SH, Burright EN, Fratkin JD, McDaniel DO, Desaiah D, Qin Z (1998) Reduced immunoreactivity to calcium-binding proteins in Purkinje cells precedes onset of ataxia in spinocerebellar ataxia-1 transgenic mice. Neurology 50: 106-13
    Vig PJ, Subramony SH, Qin Z, McDaniel DO, Fratkin JD (2000) Relationship between ataxin-1 nuclear inclusions and Purkinje cell specific proteins in SCA-1 transgenic mice. J Neurol Sci 174: 100-10
    Vincent JB, Yuan QP, Schalling M, Adolfsson R, Azevedo MH, Macedo A, Bauer A, DallaTorre C, Medeiros HM, Pato MT, Pato CN, Bowen T, Guy CA, Owen MJ, O'Donovan MC, Paterson AD, Petronis A, Kennedy JL (2000) Long repeat tracts at SCA8 in major psychosis. Am J Med Genet 96: 873-6
    Virshup DM (2000) Protein phosphatase 2A: a panoply of enzymes. Curr Opin Cell Biol 12: 180-5
    Werner A, Berdal A (2005) Natural antisense transcripts: sound or silence? Physiol Genomics 23: 125-31
    Worth PF, Houlden H, Giunti P, Davis MB, Wood NW (2000) Large, expanded repeats in SCA8 are not confined to patients with cerebellar ataxia. Nat Genet 24: 214-5
    Wutz A, Smrzka OW, Schweifer N, Schellander K, Wagner EF, Barlow DP (1997) Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389: 745-9
    Xu Z, Chang LW, Slikker W, Jr., Ali SF, Rountree RL, Scallet AC (2000) A dose-response study of ibogaine-induced neuropathology in the rat cerebellum. Toxicol Sci 57: 95-101
    Xue F, Cooley L (1993) kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell 72: 681-93
    Yabe I, Sasaki H, Chen DH, Raskind WH, Bird TD, Yamashita I, Tsuji S, Kikuchi S, Tashiro K (2003) Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Arch Neurol 60: 1749-51
    Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15: 62-9
    Zuhlke C, Gehlken U, Hellenbroich Y, Schwinger E, Burk K (2003) Phenotypical variability of expanded alleles in the TATA-binding protein gene. Reduced penetrance in SCA17? J Neurol 250: 161-3
    Zuhlke C, Hellenbroich Y, Dalski A, Kononowa N, Hagenah J, Vieregge P, Riess O, Klein C, Schwinger E (2001) Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur J Hum Genet 9: 160-4

    QR CODE