簡易檢索 / 詳目顯示

研究生: 林靜雯
Jing-Wen Lin
論文名稱: 由概念演化觀點探究不同教科書教-學序列對不同心智模式學生電學學習之影響
Investigating the influences of different teaching-learning sequences in textbooks on students with different mental models of electricity from the perspective of conceptual evolution
指導教授: 邱美虹
Chiu, Mei-Hung
學位類別: 博士
Doctor
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 390
中文關鍵詞: 概念演化心智模式教-學序列教科書支序分析
英文關鍵詞: Conceptual evolution, mental model, teaching-learning sequence, textbook, Cladistics
論文種類: 學術論文
相關次數: 點閱:292下載:166
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究為第一個將生物學之系統發育分類分析方法(Cladistics)引介至科學教育之跨領域研究,其目的旨在以更科學化、系統化且更省時省力的方式獲得兒童概念發展的演化路徑,以奠基於此設計出真正以兒童先備概念為基礎的科學課程。據此,本研究首先由文獻探討及分析建立兒童科學概念學習與生物演化論及認識演化論之間類比的合理性,以為此研究取向提供穩固的理論基礎。其次研究者設計440人參與之跨年級診斷式測驗,藉此檢驗此分析取向所獲得之學生電學概念演化路徑的假設。接著奠基於此概念演化路徑結合教科用書分析,研究者因應不同電學心智模式的學生設計出以學童電學先備知識為基礎發展的教-學序列,最後藉由小組教學的方式檢驗所發展之教-學序列的有效性。
    本研究共分四階段進行:第一階段,研究者以單極模式為外群,利用12個認知特徵輸入PAUP 4.0軟體,並以窮盡搜尋的方式分析11個串聯電路的心智模式,建立了兒童電學心智模式演化樹的假設—Tree 70。此假設顯示兒童電學概念的演進路徑為:雙極極性、雙極電流方向封閉性、燈泡因電流會合而發光分配電流燈泡因吸收電流而發光、完整通路的概念、正確電流方向單極極性系統性、電流共享燈泡因電能轉換而發光、修正順序推理模式、錯誤電流強度、電流守恆修正資源消耗模式、正確電流強度。
    第二階段,研究者以電學診斷式測驗檢測三年級、五年級、國一及國三學生各60、92、212及76名,藉此獲得學生的心智模式及各認知特徵於各年段的分佈頻率以檢驗Tree 70的預測。研究結果顯示Tree 70的預測與實徵結果大致相符,初步證實了系統發育分類學應用於科學教育的可行性。
    第三階段,本研究分析民國57年後八個版本的教科書,研究結果發現:電學相關教科書共有靜電與電量、電路、電壓、電流、電阻及電能這六大次概念之命題陳述共69個,而九年一貫實施後的版本更加著重於電流、電壓與電路這三個次概念。所有版本都沒有考慮到學生的另有概念,且多使用講述、圖示和實驗為主要教學活動。而主要的教學順序,九年一貫的版本大致遵守著靜電與電量電路電壓電流電阻的線性關係。但年代較為久遠的三個版本的安排則傾向於非簡單的複雜關係。所有版本皆與Hrtel所陳之電流電量電壓電阻的線性教學相左。這顯示電流的教學並非妨礙我國學生電壓學習的原因。
    第四階段,研究者由第一階段受試者中選取國一學生中具特定心智模式:衰減模式(M1)、混合模式(Mmix)及撞擊模式(M2)各10人,配對平分於TLS實驗組及對照組進行每組5人的小組教學,以進一步檢驗以兒童心智模式演化路徑為基礎,輔以各版本教科書分析後所發展之教-學序列的有效性。結果顯示:本研究所設計之教-學序列無論從量化比較、質化心智模式轉變的分析,或學生情意態度的自評觀之,都顯示其不但能同時達成現行教科書具體目標的要求、協助學生克服另有概念,並有助於電學概念的遷移與應用。而各項測驗成績中,不同心智模式的小組大致呈現M1>Mmix>M2的趨勢,這顯示了心智模式的正確性有助於克服另有概念及協助電學概念的理解。此外,研究發現持有一致性心智模式者的各項學習成效皆優於不具一致性心智模式者,但其並不影響學生認知特徵修正的因素及來源。
    綜上所述,以系統發育分類分析取向詮釋兒童電學概念的演化,不僅具有理論的合理性,亦具有實徵調查驗證的支持,且研究者奠基於此分析實際設計教-學序列亦獲得很好的教學成效。此外,研究者基於此種分析取向所呈現的表徵及所獲之研究結果,主張兒童心智模式的運作受「一致性」、「正確性」、及「完整性」三因子的影響。而本研究以概念架構的演化觀點提出「概念的複雜性」、「預設及概念本體的錯置」以及「概念的趨同演化或返祖」這三個向度以更具含括性的觀點,補充了現有的概念改變理論。

    This is the first cross-domain study on the use of Cladistics in Biology in Science Education. The purpose of this study is to adopt a more scientific, systematical, and time/effort-saving methodology than traditional research methods to obtain children’s conceptions developmental pathway. This pathway is considered as a foundation of designing scientific curriculum in which the materials took into account of children’s preconceptions. Accordingly, this study constructed a rationale of the analogy among children’s conceptual learning, Evolutionary Epistemology and Biology Evolution to lay a stable theoretical foundation from literature review and analysis at first. Then, the researcher designed a set of diagnostic test items to examine the hypothesis of student’s conceptual developmental pathway in electricity which was constructed by the Cladistical methodology. Next, the researcher combined the conceptual developmental pathway with textbook analysis to design different teaching-learning sequences (TLS) which were based on different student’s mental models. Finally, the effectiveness of the designed TLSs was tested by several different learning achievements of peer groups.
    There were four stages in this study: at the first stage, the researcher chose uni-polar model as outgroup and keyed in the coding matrix of eleven mental models and twelve cognitive characters in software PAUP 4.0, then used “exhaustive search” to construct the hypothesis of children’s conceptual developmental pathway—Tree 70. The hypothetical pathway showed that most students’ developmental pathway in series circuit system is bipolar, bi-directional of current closed loop, role of bulb(meet)distribute currentrole of bulb(absorb/hinder), route, scientific unidirectional of currentUni-polarsystemwide, sharing currentrole of bulb (pass through/transfer), revised sequential inference model, incorrect strength of current, consistent currentrevised source-consumer model, correct strength of current.
    At the second stage, this study adopted diagnostic tests to 60 third graders, 92 fifth graders, 212 7th graders, and 76 9th graders to obtain the cross-age frequencies of students’ mental models and cognitive characters. The researcher tested the predictions of Tree 70 by comparing with the frequencies investigation. From the practical data, it verified the feasibility of applying Cladistics to Science Education.
    At the third stage, this study analyzed eight versions of textbooks about electricity produced after 1968. The results showed that there were totally 69 proposition statements in six sub-concepts (static electricity and coulomb, circuit, voltage, electric current, resistance and electric energy) in all versions of textbooks. The versions after implementing Grade 1-9 Curriculum emphasized more on the sub-conceptions of electric current, voltage, and resistance. All versions did not address students’ alternative conceptions and adopted more teaching activities in lecture, figure and experiment. The main teaching sequences of Grade 1-9 Integrated Curriculum versions almost followed the linear sequence of static electricity and coulomb, circuit, voltage, electric current and resistance, while others showed more complicated sequences than the rest. All versions differ from the one which Hrtel investigated (the sequence of electric current, coulomb, voltage, and resistance). It indicated that the teaching of current was not the reason to interfere with the learning of voltage.
    The fourth stage, the researcher selected the students with Current consumption model(M1)、Mixed model(Mmix) and Cross model(M2) from 7th graders in the first stage. Ten students were in each mental model group. The researcher made pairs and assigned them into groups to test the effectiveness of TLSs which are based on Tree 70 and textbook analysis. The results showed that no matter in the aspects of quantitative, qualitative analysis or self-evaluation of learning attitude, TLSs were helpful to overcome alternative concepts, attend the teaching goals of current textbooks, transfer and apply the electrical concepts. Besides, in different tests, the achievements of different mental model groups showed the tendency of M1>Mmix>M2. It indicated that the correctness of mental model was helpful to overcome alternative concepts and understand conceptions in electricity. However, it did not influence students’ factors and sources of revising cognitive characters.
    In sum, the approach of Cladistics could explicitly explain and represent children’s conceptual evolution in electricity. It not only built on a stable theoretical basis, but also supported by the practical survey data. Moreover, the TLSs which were based on Cladistics methodology could promote students learning in electricity. In light of the results in this study, the researcher claimed that the manipulation of children’s mental model was influenced by “consistence”, “correctness”, and “completeness”. Furthermore, “the complexity of conceptions”, “the nature of cognitive characters”, and “the homoplasy of conceptions”, the three main aspects, explained the evolution of students’ conceptual framework with an inclusive perspective, and supplemented the current theory of conceptual change.

    第壹章 緒論…………………………………………………………………….. 1 第一節 研究動機………………………………………………………….. 2 第二節 研究目的與問題………………………………………………….. 7 第三節 名詞釋義………………………………………………………….. 11 第四節 研究範圍與限制………………………………………………….. 13 第貳章 文獻探討與分析……………………………………………………….. 14 第一節 概念改變.………....………………………………………………. 14 第二節 概念演化之理論基礎…………………………………………….. 28 第三節 系統發育分類學支序分析之理論基礎………………………….. 39 第四節 教-學序列…….…………………………………………………... 52 第五節 心智模式………………………………………………………….. 69 第六節 電學相關研究….…………………………………………………. 74 第七節 總結………………………………………………….………....…. 90 第參章 研究方法……………………………………………………………….. 93 第一節 研究對象.………....………………………………………………. 94 第二節 教材設計………………………………………………………….. 97 第三節 研究工具……………………………….…………………………. 103 第四節 研究流程……….…………………………………………………. 108 第五節 資料處理與分析………………………………………………….. 110 第肆章 結果分析與討論……………………………………………………….. 123 第一節 兒童電學心智模式演化樹……………………………………….. 123 第二節 電學認知特徵之頻率分佈及認知發展分析……………………. 133 第三節 兒童是否具有一致性的心智模式?…………………………….. 154 第四節 電學教科書內容結構暨教學順序之分析比較………………… 163 第五節 教科書TLS成效的比較…………………………………….…… 196 第六節 電流心智模式改變的歷程及因素……………………………….. 207 第七節 電流心智模式改變因素之比較………………………………….. 239 第八節 學習情意態度的比較…………………………………………….. 250 第伍章 結論與建議…………………………………………………………….. 258 第一節 結論………………………………....…………………………….. 259 第二節 建議………………………………………………………………. 275 參考文獻………………………………………………………………………….. 281 附錄……………………………………………………………….………………. 297 附錄一:電學診斷式測驗卷……….……………………..………………… 297 附錄二:電學學習成就測驗卷…….……………………..………………… 299 附錄三:電學遷移應用測驗題……………………….…..………………… 301 附錄四: TLS0學習教材……………………………….………………….. 302 TLS1學習教材……………………………….………………….. 333 附錄五:TLS0對照組教-學序列…………………………………………… 369 TLS1教-學序列…………………………………………………… 373 TLS2教-學序列………………..………………..………………… 378 附錄六:學習歷程紀錄表…………………………………………………… 383 附錄七:TLS情意態度問卷………………………………………………… 384 附錄八:教科書命題陳述總覽…………………………………………….. 385 附錄九:各組於學習歷程紀錄中認知特徵修正的級數與因素……….… 388 表 2-1-1 直接過程與突現過程的概念本體屬性…………………………… 18 表 2-1-2 Thagard概念改變的九個層次及相對應的科學革命與兒童概念改變………………………………………………………………… 20 表 2-1-3 各家學者對概念改變程度之用語的比較………………………… 24 表 2-2-1 Hull對生物學及科學概念發展之類比及定義…………………… 34 表 2-2-2 不同組織層次之演化觀點的類比………………………………… 38 表 2-4-1 兒童與科學教學交互作用的的結果……………………………… 67 表 2-6-1 電學相關TLS研究中的教-學序列及其結論意涵……………….. 87 表 3-1-1 自然與生活科技學習領域課程綱要及現行自然與生活科技各版本的教材之安排…………………………………………………… 95 表 3-1-2 實際參與研究之學生狀況及人數………………………………… 96 表 3-2-1 國編本第二冊理化教師手冊(2003)中所擬訂的單元教學目標….. 98 表 3-2-2 電領域與類比領域概念對照表…………………………………… 101 表 3-2-3 另有概念與教學活動對照表……………………………………… 102 表 3-3-1 電學診斷式測驗之測驗項目細目表……………………………… 104 表 3-3-2 電學學習成就測驗之測驗項目細目表…………………………… 105 表 3-5-1 電學心智模式認知特徵編碼表…………………………………… 111 表 3-5-2 檢驗學生心智模式一致性之可能答題組合……………………… 112 表 3-5-3 九年一貫暫行綱要自然與生活科技之教材內容與電學相關之細目…………………………………………………………………… 117 表 3-5-4 本研究所分析之教科書的詳細資訊……………………………… 118 表 3-5-5 學生串聯電路之電流模式編碼表………………………………… 121 表 3-5-6 學習者面臨異例時的反應………………………………………… 122 表 4-1-1 認知特徵分析表.………....….………....….………....….……….... 125 表 4-4-1 八個版本共有的命題陳述.………....….………....….………....…. 171 表 4-4-2 各版本出現次數最多排名前五名的命題陳述.………....….…….. 172 表 4-4-3 電學教科書之命題陳述與其相應的教學活動—靜電與電量..….. 174 表 4-4-4 電學教科書之命題陳述與其相應的教學活動—電路…………… 175 表 4-4-5 電學教科書之命題陳述與其相應的教學活動—電壓…………… 177 表 4-4-6 電學教科書之命題陳述與其相應的教學活動—電流…………… 178 表 4-4-7 電學教科書之命題陳述與其相應的教學活動—電阻…………… 180 表 4-4-8 各版本教科書中可能有助於學生克服另有概念之教學活動分析表.………....….………....….………....….………....….………....... 183 表 4-4-9 教科書教學順序總覽……………………………………………… 194 表 4-5-1 對照組及TLS實驗組學生後測整體成績之描述性統計.………... 197 表 4-5-2 TLS實驗組及對照組後測整體成績之2 related samples test 比較 197 表 4-5-3 對照組及TLS實驗組下不同心智模式學生後測整體成績之描述性統計.………....….………....….………....….………....….……... 198 表 4-5-4 TLS實驗組及對照組下六心智模式小組後測整體成績之2 related samples test 比較.………....….………....….………....…… 198 表 4-5-5 對照組及TLS實驗組學生後測電學診斷式測驗成績之描述性統計.………....….………....….………....….………....….………...... 199 表 4-5-6 TLS實驗組及對照組後測診斷式測驗之2 related samples test 比較.………....….………....….……….... .………....….………....…. 199 表 4-5-7 對照組及TLS實驗組下不同心智模式學生電學診斷式測驗成績之描述性統計.………....….………....….………....….………....… 200 表 4-5-8 TLS實驗組及對照組下六心智模式小組電學診斷式測驗成績之2 related samples test 比較.………....….………....….………....…. 201 表 4-5-9 對照組及TLS實驗組學生後測電學成就測驗成績之描述性統計.………....….………....….………....….………....….………...... 201 表 4-5-10 TLS實驗組及對照組後測電學成就測驗成績之2 related samples test 比較.………....….………....….………....….….….………....... 202 表 4-5-11 對照組及TLS實驗組下不同心智模式學生電學成就測驗成績之描述性統計.………....….………....….………....….………....…… 202 表 4-5-12 TLS實驗組及對照組下六心智模式小組電學成就測驗成績之2 related samples test 比較.………....….………....….………....…… 203 表 4-5-13 對照組及TLS實驗組學生後測電學遷移應用測驗成績之描述性統計.………....….………....….………....….………....….………... 203 表 4-5-14 TLS實驗組及對照組遷移應用測驗成績之2 related samples test 比較.………....….………....….………....….………....….………... 204 表 4-5-15 對照組及TLS實驗組下不同心智模式學生電學遷移應用測驗成績之描述性統計.………....….………....….………....….……….... 205 表4-5-16 TLS實驗組及對照組下六心智模式小組電學遷移應用測驗成績之2 related samples test 比較.………....….………....….……….... 205 表 4-6-1 六組不同心智模式的學生心智模式演化歷程一覽表.………....... 208 表 4-6-2 TLS0-M1組之TLS0-Q7的學習歷程紀錄.………....….………....… 214 表 4-6-3 TLS1-M1組之TLS0-Q6的學習歷程紀錄.………....….………....… 216 表 4-6-4 #11231於TLS0-Q2的學習歷程紀錄.………....….………....……. 219 表 4-6-5 TLS0-Mmix組之TLS0-Q7的學習歷程紀錄.………....….……….... 221 表 4-6-6 TLS1-Mmix組之TLS1-Q2的學習歷程紀錄.………....….……….... 223 表 4-6-7 #11402於TLS1-Q4之學習歷程紀錄.………....….………....…… 224 表 4-6-8 TLS1-Mmix組之TLS1-Q7的學習歷程紀錄.………....….……….... 225 表 4-6-9 #11516於TLS0-Q2之學習歷程紀錄.………....….………....…… 228 表 4-6-10 TLS0-Mmix組之TLS0-Q7的學習歷程紀錄.………....….……….... 231 表 4-6-11 TLS1-Mmix組之TLS1-Q2的學習歷程紀錄.………....….………... 232 表 4-6-12 TLS2-M2組之TLS1-Q4的學習歷程紀錄.………....….………....… 235 表 4-6-13 TLS2-M2組之TLS2-Q7的學習歷程紀錄.………....….………....… 236 表 4-7-1 #11310於TLS0-Q4之學習歷程紀錄.………....….………....…… 240 表 5-1-1 認知特徵分析表…………………………………………………… 260 圖次 圖 2-1-1 本體樹的組織架構………………………………………………… 17 圖 2-1-2 Vosniadou對概念改變架構的看法……………………………….. 19 圖 2-2-1 橫跨學科之智力內容的概念變異和智力選擇雙過程的表徵…… 32 圖 2-3-1 (a)單系、(b)並系及(c)複系的例子……………………………….. 40 圖 2-3-2 某些植物類群的系統發育關係…………………………………… 42 圖 2-3-3 根據包含/排除法則整合不同變換系列所得到的訊息整合至樹型圖的兩個例子…………………………………………………… 44 圖 2-3-4 3個分類單元時可能的樹型圖……………………………………. 45 圖 2-3-5 Bennett, Li和Ma研究中33封信演化系譜樹的重建…………… 50 圖 2-4-1 教育重構組成圖…………………………………………………… 56 圖 2-4-2 影響TLS研究因素的教導菱形…………………………………… 57 圖 2-4-3 由射線建構光學成像—物理概念教學前與教學後的比較……… 58 圖 2-4-4 Welzel呈現了學生的學習如同概念在物件層次、特徵、事件、綱領和原則這五個層次上逐步增加其複雜性…………………… 59 圖 2-4-5 教學實驗的四個階段……………………………………………… 61 圖 2-4-6 三種TLS於9個概念中量化圖表的比較…………………….…… 65 圖 2-4-7 傳統課程計畫至學生學習之轉化過程的概念架構……………… 66 圖 2-4-8 TLS理念下學生學習之轉化過程的概念架構…………………… 67 圖 2-6-1 學生所建立之簡單電路的通路類型……………………………… 74 圖 2-6-2 學生對簡單電路電流概念之四種模式…………………………… 76 圖 2-6-3 學生對簡單電路及串聯電路之電流的6種分類………………… 77 圖 2-6-4 學生對於簡單通路及串聯電路所持之心智模式總整理………… 80 圖 2-6-5 學生對於並聯電路所持之心智模式總整理……………………… 81 圖 2-6-6 雙重水柱裝置與電路的類比……………………………………… 86 圖 3-0-1 本研究TLS設計架構……………………………………………… 93 圖 3-4-1 研究流程圖………………………………………………………… 109 圖 4-1-1 B1~B3三電流模式中間電流之認知特徵編碼應為自衍徵的關係樹.………....….………....….………....….………....….………... 124 圖 4-1-2 兒童電學心智模式演化樹之假設—Tree 70……....….………..... 124 圖 4-2-1 認知特徵1「兩燈泡間的電流」之頻率分佈圖.………....….……… 134 圖 4-2-2 認知特徵8「極性」之頻率分佈圖.………....….………....….…… 135 圖 4-2-3 認知特徵10「電流方向」之頻率分佈圖.………....….………....… 137 圖 4-2-4 認知特徵3「封閉性」之頻率分佈圖.………....….………....…… 138 圖 4-2-5 認知特徵11「燈泡角色」之頻率分佈圖.………....….………....… 139 圖 4-2-6 認知特徵12「電流守恆」之頻率分佈圖.………....….………....… 141 圖 4-2-7 認知特徵2「通路」之頻率分佈圖.………....….………....….…… 144 圖 4-2-8 認知特徵6「系統性」之頻率分佈圖.………....….………....…… 145 圖 4-2-9 認知特徵5「非順序推理」之頻率分佈圖.………....….………....… 147 圖 4-2-10 認知特徵7「去資源消耗」之頻率分佈圖.………....….………....… 148 圖 4-2-11 兒童電學心智模式之認知特徵發展分析圖.………....….……….. 149 圖 4-3-1 三年級學生心智模式一致性分析圖.………....….………....….…. 155 圖 4-3-2 五年級學生心智模式一致性分析圖.………....….………....….…. 156 圖 4-3-3 國中一年級學生心智模式一致性分析圖.………....….………...... 158 圖 4-3-4 國中三年級學生心智模式一致性分析圖.………....….………...... 159 圖 4-3-5 各年段各種一致性心智模式比例之統整.………....….………...... 161 圖 4-4-1 各版教科書命題陳述分配暨次主題比例圖.………....….……….. 164 圖 4-4-2 各版本教科書次主題比例圖……………………………………… 170 圖 4-4-2 教科書教學順序分析.………....….………....….………....………. 192 圖 4-6-1 持有M1心智模式的學生心智模式演化之歷程.………....………. 211 圖 4-6-2 持有Mmix心智模式的學生心智模式演化之歷程.………....….… 218 圖 4-6-3 持有M2心智模式的學生心智模式演化之歷程.………....………. 227 圖 4-7-1 認知特徵修正類型的個數及比例分佈圖.………....….………...... 242 圖 4-7-2 各組認知特徵修正情形的比較.………....….………....….………. 244 圖 4-7-3 各組認知特徵修正來源的個數及比例.………....….………....….. 245 圖 4-7-4 各組認知特徵修正因素之個數及比例.………....….………....….. 247 圖 4-8-1 學生對教科書內容及順序安排的態度.………....….………....….. 251 圖 4-8-2 學生對小組教學態度.………....….………....….………....….…… 252 圖 4-8-3 學生互評小組成員的學習態度與後測總分最高分及最低分之對照圖.………....….………....….……....….………....….………...... 253 圖 4-8-4 學生對任課教師的態度.………....….………....….………....……. 255 圖 4-8-5 學生對自我學習態度的評估.………....….………....….………..... 256 圖 5-1-1 兒童電學心智模式的假設演化樹Tree 70.….………..... .….…… 259 圖 5-1-2 兒童電學心智模式之認知特徵發展分析圖.….………..... .….….. 264

    一、中文部分
    王道還譯(2003):連鎖信的演化史,科學人,8,99-104。
    沐紹良譯(1933):Lamark C.de.動物哲學。商務印書館。
    育成出版社(2004):國民中學自然與生活科技教科書第五冊。台北市:育成。
    林財庫(2005):創造進化論及其在科學教育上的一些應用,科學教育學刊,13(2),141-168。
    林靜雯(2000):由概念改變及心智模式初探多重類比對國小四年級學生電學概念學習之影響。台北市:國立臺灣師範大學碩士論文(未出版)。
    林靜雯與邱美虹(2005):整合類比與多重表徵研究取向探究多重類比設計對兒童電學概念學習之影響。科學教育學刊,13(3),317-345。
    林靜雯與邱美虹(2006):以述詞分析法探究多重類比於電學教學中概念改變之成效。科學教育學刊,14(1),xxx-xxx。
    邱美虹(2000):概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
    邱美虹與林靜雯(2002):以多重類比探究兒童電流心智模式之改變。科學教育學刊,10(2),109-134。
    南一出版社(2004):國民中學自然與生活科技教科書第五冊。台南市:南一。
    國立編譯館(1968):國民中學物理教科書第四冊。台北市:國立編譯館。
    國立編譯館(1972):國民中學物理教科書第四冊。台北市:國立編譯館。
    國立編譯館(1992):國民中學理化教科書第四冊。台北市:國立編譯館。
    國立編譯館(2003):國民中學理化第二冊。台北市:國立編譯館。
    康軒出版社(2004):國民中學自然與生活科技教科書第六冊。台北市:康軒。
    教育部(2000):國民中小學九年一貫暫行綱要。台北市:教育部。
    陳啟明與陳瓊森(1992):探究高一學生對直流電路的迷思概念。科學教育, (3), 22-72。
    陳龍川(1992):花蓮師院學生簡單直流電路迷思概念類型及其分佈調查。花師數理教育學報,1,65-80。
    陳瓊森(1996):類比和模型:電學迷思概念轉變研究。認知與學習專題研究計畫成果與學術研討會結案報告。嘉義市:中正大學認知科學研究中心。
    楊文金(1992):在職國小教師對基本電路之概念研究。中華民國第八屆科學教育學術研討會論文彙編,499-518。高雄:國立高雄師範大學。
    葉俊豪與陳瓊森(1995):利用定性與定量測驗來探究高二學生對直流電路的知識結構。科學教育,6,156-178。
    劉俊庚(2002):迷思概念與概念改變教學策略之文獻分析—以概念構圖和後設分析模式探討其意涵與影響。台北市:國立臺灣師範大學科學教育研究所碩士論文。(未出版)
    翰林出版社(2004):國民中學自然與生活科技教科書第六冊。台南市:翰林。
    謝蘊貞譯(1972):Darwin C.物種始源。科學出版。

    二、英文部分
    Aiello-Nicosia, M. L., & Sperandeo-Mineo, R. M. (2000). Educational reconstruction of physics content to be taught and of pre-service teacher training: A case study. International Journal of Science Education, 22(10), 1085-1097.
    Andersson, B., & Bach, F. (1996). Developing new teaching sequences in science: The example of "gases and their properties". Paper presented at the Research in Science Education in Europe: Current Issues and Themes, London.
    Arnold, M., &, Millar, R. (1987). Being constructive: An alternative approach to the teaching of introductory ideas in electricity. International Journal of Science Education, 9(5), 553-563.
    Artigue, M. (1988). Ingnirie didactique. Recherches en didactique des Mathmatiques, 9(3), 281–308.
    Asoko, H. (1996). Developing scientific concepts in the primary classroom: Teaching about electric circuits. In G. Welford, J. Osborne & P. Scott (Eds.), Research in science education in Europe. London / Washington, D. C.: Falmer Press.
    Bennett, C. H., Li, M., & Ma, B. (1999). Chain letters homepage. Retrieved March, 10, 2004, from http://www.cs.uwaterloo.ca/~mli/chain.html.
    Besnard, D., Greathead, D., & Baxter, G. (2004). When mental models go wrong: Co-occurrences in dynamic, critical systems. International Journal of Human-Computer Studies, 60, 117-128.
    Boohan, R. (1996). Using a picture language to teach about processes of change. Paper presented at the Research in Science Education in Europe: Current Issues and Themes, London.
    Borges, A. T., & Gilbert, J. K. (1999). Mental models of electricity. International Journal of Science Education, 21(1), 98-117.
    Bruner, J. S. (1960). The Process of Education. Cambridge: Harvard U. Pr.(Paperback, New York: Vintage, 1961)
    Burdin, L. (1966). Transantarctic relationships and their significance, as evidenced by chironomid midges. Kingl. Svenska Vetenskap. Handl. 11:1-472.
    Bybee, R. W., & deBoer, G. E. (1994). Research on goals for the science curriculum. In D. L. Gabel. (Ed.), Handbook of research on science teaching and learning. New York: Macmillan.
    Campbell, D. T. (1974). Evolutionary epistemology, in radnitzky, G. and Bartley, III, W.W. (eds.,1987). Evolutionary epistemology, rationality, and the sociology of knowledge. Open Court.
    Campbell, D. T. (1988). Methodology and epistemology for social science: Selected papers. Ed. E. Overman. Chicago: University of Chicago Press.
    Campbell, D. T.(1960). Blind variation and selective retention in creative thought as in other knowledge processes. Psychological Review, 67, 380-400.
    Carey, S. (1988). Reorganization of knowledge in the course of acquisition. In S. Strauss (Ed.), Ontogeny, phylogeny, and historical development (pp. 1-27). Norwood, NJ: Ablex.
    Carlton. (1999). Teaching electric current and electrical potential. Physical Education, 34(6), 341-345.
    Cavalli-Sforza, L. L. (1996). Geni, popoli e Lingue. Adelphi Edizioni S. P. A.吳一丰、鄭谷苑和楊曉珮譯(2003):追蹤亞當夏娃:從演化歷史看基因、民族和語言的關係。台北市:遠流。
    Chang, C.-Y., & Barufaldi, J.-P. (1999). The use of a problem-solving-based instructional model in initiating change in students’ achievement and alternative frameworks. International Journal of Science Education, 21(4), 373-388.
    Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive models of science. Minneapolis: University of Minnesota Press.
    Chi, M. T. H. (1997). Creativity: Shifting across ontological categories flexibly. In S. M. S. T. B. Ward, & J. Vaid (Ed.), Creative thought: An investigation of conceptual structures and process (pp. 209-234). Washington, DC: American Psychological Association.
    Chi, M. T. H., & Roscoe, R. D. (2002). The processes and challenges of conceptual change. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 3-27). Netherlands: Kluwer Academic Publishers.
    Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts [special issue]. Learning and Instruction, 4, 27-43.
    Chi, M.T.H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. The Journal of the Learning Sciences, 14(2), 161-199.
    Chinn, C., & Brewer, W. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63, 1-49.
    Chiu, M. H., & Lin, J. W. (2005). Promoting fourth graders' conceptual change of their understanding of electric current via multiple analogies. Journal of Research in Science Teaching, 42(4), 424-468.
    Closset, J. L. (1983). Sequential reasoning in electricity. In Research on Physics Education, Proceedings of the First International Workshop, 23 June-13 July, La Londe les Maures, France, Editions du Centre National de la Recherche Scientifique, Paris (1984), 313-319.
    Cohen, R. (1984). Causal relations in electric circuits: students. In Duit, R., Jung, W. & von Rhoneck, C. (Eds.), Aspects of Understanding Electricity, Proceedings of the International Workshop, 10-14 September, Ludwigsburg (Schmidt and Klauning, Kiel, 1985); IPN-Arbeitsberichte, 59: 107-113.
    Cohen, R., Eylon, B. & Ganiel, U. (1983). Potential difference and current in simple electric circuits: a study of students’ concepts. American Journal of Physics, 51(5), 407-412.
    Dewey, I., & Dykstra, D. I. (1992). Studying conceptual change: Constructing new understandings. Paper presented at the Research in Physics Learning: Theoretical Issues and Empirical Studies, Kiel.
    diSessa, A. A. (1988). Knowledge in pieces. In G. F. a. P. Pufall (Ed.), Constructivism in the computer age. Cambridge, MA: MIT Press.
    diSessa, A. A. (1993). Towards an epistemology of physics. Cognition and Instruction, 10(2 & 3), 105-225.
    diSessa, A. A., & Sherin, B. L. (1998). What changes in conceptual change? International Journal of Science Education, 20(10), 1155-1191.
    Driver, R., & Bell, B. (1986). Students' thinking and the learning of science: A constructivist view. The School Science Review, 67, 443-456.
    Driver, R., & Erickson, G. (1983). Theories in action: Some theoretical and empirical issues in the study of students' conceptual frameworks in science. Studies in Science Education, 10, 37-60.
    Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in science. Studies in Science Education, 13(5), 37-60.
    Driver, R., Leach, J., Scott, P. & Wood-Robinson, C. (1994) Young people’s understanding of science concepts: Implications of cross-age studies for curriculum planning. Studies in Science Education, 24, 75-100.
    Driver, R., Sauires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science: Research into children's ideas. London and New York: Routledge.
    Duit, R. (1984). The meaning of current and voltage in everyday language and its consequences for the physical concepts of the electric circuit. In Duit, R., Jung, W. & von Rhoneck, C. (Eds.), Aspects of Understanding Electricity, Proceedings of the International Workshop, 10-14 September, Ludwigsburg (Schmidt and Klauning, Kiel, 1985); IPN-Arbeitsberichte, 59: 205-214.
    Duit, R., & Komorek, M. (1997). Understanding the basic ideas of chaos theory in a study of limited predictability. International Journal of Science Education, 19, 247-264.
    Duit, R., & Treagust, D. (1998). Learning in science: From behaviourism towards social constructivism and beyond. In B. Fraser & K. Tobin (Eds.), International handbook of science education. Dodrecht, The Netherlands: Kluwer.
    Duit, R., Goldgerg, F., & Niedderer, H. (1992). Research in physics learning: Theoretical issues and empirical studies. Paper presented at the Proceedings of an International Workshop in Bremen, IPN.
    Duit, R., Roth, W.-M., Komorek, M., & Wilbers, J. (1998). Conceptual change cum discourse analysis to understanding in a unit on chaotic systems: Towards an integrative perspective on learning in science. International Journal of Science Education, 20, 1059-1073.
    Dupin, J. J., & Johsua, S. (1984). Teaching electricity: interactive evolution of representations, models and experiments in a class situation. In Duit, R., Jung, W. & von Rhoneck, C. (Eds.), Aspects of Understanding Electricity, Proceedings of the International Workshop, 10-14 September, Ludwigsburg (Schmidt and Klauning, Kiel, 1985); IPN-Arbeitsberichte, 59: 331-341.
    Dupin, J. J., & Johsua, S. (1987). Conceptions of French pupils concerning electric circuits: Structure and evolution. Journal of Research in Science Teaching, 24(9), 791-806.
    Dupin, J. J., & Johsua, S. (1989). Analogies and “modeling analogies” in teaching: some examples in basic electricity. Science Education, 73(2), 207-224.
    Dupin, J. J., & Johsua, S. (1994). Analogies et enseignement des sciences: Une analogie thermique pour l' electricite. Didaskalia, 3, 9-26.
    Duschl, R. A., & Gitomer, D. H. (1991). Epistemological perspectives on conceptual change: Implications for educational practice. Journal of Research in Science Teaching, 28, 839–858.
    Farris, J. S. (1970). Methods of computing Wagner trees. Syst. Zool., 19, 83-92.
    Farris, J. S. (1977). Phylogenetic analysis under Dollo’s Law. Syst. Zool., 26, 77-88.
    Farris, J. S. (1989) The retention index and rescaled consistency index. Cladistics, 5, 417-419.
    Ferrari, M., & Chi, M. T. H. (1998). The nature of naive explanations of natural selection. International Journal of Science Education, 20(10), 1231-1256.
    Fetterman, D. M. (1988). Qualitative approaches to evaluation in education. New York: Praeger.
    Finley, F. N., & Stewart, J. (1982). Representing substantive structures. Science Education, 66, 593-611.
    Fitch, W. M. (1971). Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool., 20, 406-416.
    Franco, C., & Colinvaux, D. (2000). Grasping mental models. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education. Dordrecht/ Boston/ London: Kluwer Academic Publishers.
    Frederiksen, J. R., & White, B. Y., (2000, April 26). Sources of difficulty in students’ understanding causal models for physical systems. Paper was presented at a Symposium on Complex Causality and Conceptual Change at the Annual Meeting of the American Educational Research Association in New Orleans.
    Galili, I., Bendall, S., & Goldberg, F. (1993). The effect of prior knowledge and instruction on understanding image formation. Journal of Research in Science Teaching, 30(3), 271-301.
    Gentner, D., & Stevens, A. L. (1983). Mental models. Hillsdale: Lawrence Erlbaum.
    Gilbert, J. K., & Zylbersztajn, A. (1985). A conceptual framework for science education: The case study of force and movement. Europe Journal in Science Education, 7(2), 107-120.
    Gilbert, J. K., Osborne, R. J., & Fensham, P. J. (1982). Children's science and its consequences for teaching. Science Education, 66(4), 623-633.
    Glynn, S. M. (1991). The psychology of learning science. In S. M. Glynn, R. H. Yeany, & B. K. Britton. (Eds.), Mahwah, New Jersey: Lawence Erlbaum Associates.
    Glynn, S. M., Duit, R., & Thiele, R. B. (1995). Teaching science with analogies: A strategy for constructing knowledge. In M. Shawn, S. M. Glynn, Reinders, & R. Duit (Eds.), Learning Science in School: Research Reforming Practice. Mahwah, New Jersey: Lawence Erlbaum Associates.
    Guba, E., & Lincoln, Y. (1989). Fourth generation evaluation. Beverly Hills, CA: Sage.
    Gunstone, R. F., & Mitchell, I. J. (1998). Metacognition and conceptual change. In J. J. Mintzes, J. H. Wandersee & J. D. Novak (Eds.), Teaching science for understanding: A human constructivist view. San Diego: Academic Press.
    Guo, C. J. (2001). A review of studies on alternative conceptions for students in Taiwan. Paper presented at the International Symposium for Cognitive Science and Science Education, June 26-29, Taipei.
    Guzetti, B. J., Snyder, T. E., Glass, G. V., & Gamas, W. S. (1993). Promoting conceptual change in science: A comparative meta-analysis of instructional interventions from reading education and science education. Reading Research Quarterly, 28, 116-159.
    Harrison, A. G., Grayson, D. J., & Treagust, D. F. (1999). Investigating a grade 11 student’s evolving conceptions of heat and temperature. Journal of Research in Science Teaching, 36(5), 55-87.
    Hrtel, H. (1982). The electric circuit as a system: A new approach. European Joural of Science Education, 4(1), 45-55.
    Haslam, F., & Treagust, D. F. (1987). Diagnosing secondary students’ misconceptions of photosynthesis and respiration in plants using a two-tier multiple choice instrument. Journal of Biological Education, 21(3), 203-211.
    Heller, P. M., & Finley, F. N.(1992). Variable uses of alternative conceptions: A case study in current electricity. Journal of Research in Science Teaching, 29(3), 259-275.
    Hempel, C.G. (1966). Philosophy of Natural Science. Prentice-Hall, INC.
    Hendy, M. D. & Penny, D. (1982). Branch and bound algorithms to determine minimal evolutionary tree. Math. Biosci, 59, 277-290.
    Henning, W. (1950). Phylogenetic systematics. Ann. Rev. Entomol, 10, 97-116.
    Henning, W. (1966). Phylogenetic systematics. Urbana: University of Illinois Press.
    Hewson, P. W., & Thorley, N. R. (1989). The conditions of conceptual change in the classroom. International Journal of Science Education, 11, 541-553.
    Heywood, D., & Parker, J. (1997). Confronting the analogy: Primary teachers exploring the usefulness of analogies in the teaching and learning of electricity. International Journal of Science Education, 19(8), 869-885.
    Hoenigswald, H. M., & Wiener, L. F. (1987). Biological Metaphor and Cladistic classification: An Interdisciplinary Perspective. Philadelphia: University of Pennsylvania Press.
    Hull, D. L. (1975). Central subjects and historical narratives. History and theory, 14, 253-274.
    Hull, D. L. (1988). Science as a process: An evolutionary account of the social and conceptual development of science. Chicago: The University of Chicago Press.
    Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.
    Kattmann, M., Duit, R., Gropengieber, H., & Komorek, M. (1995). A model of educational reconstruction. Paper presented at the National Associate of Research in Science Teaching 1995, San Francisco, CA.
    Katu, N., Lunetta, V. N., & van den Berg, E. (1993). Teaching experiment methodology. Paper presented at the Third International Seminar on Misconceptions and Educational Strategies in Science and Mathematics, Ithaca.
    Klaassen, C. W. J. M. (1995). A problem posing approach to teaching the topic of radioactivity. Utrecht: CD-β press.
    Klaassen, C. W. J. M., & Lijnse, P. L. (1996). Interpreting students' and teachers' discourse in science classes: An underestimated problem? Journal of Research in Science Teaching, 33, 115-134.
    Klayman, J., Ha, Y.-W. (1989). Hypothesis testing in rule discovery: Strategy, structure and content. Journal of Experimental Psychology: Learning, Memory and Cognition, 5, 596–604.
    Kluge, A. G. & Farris, J. S. (1969). Quantitative phyletics and the evolution of anurans. Syst. Zool., 18, 1-32.
    Komorek, M., & Duit, R. (2004). The teaching experiment as a powerful method to develop and evaluate teaching and learning sequences in the domain of non-linear systems. International Journal of Science Education, 26(5), 619-633.
    Kortland, J. (2001). A problem posing approach to teaching decision making about the wasteissue. Utrecht: CDiβPress.
    Koumaras, P., Psillos, D., & Kariotoglou, P. (1997). Causal structures and counter-intuitive experiments in electricity. International Journal of Science Education, 19, 617-630.
    Kuhn, T. S. (1962). The Structure of Scientific Revolution. Chicago: The University of Chicago Press.
    Lakatos, I. (1970). Falsification and methodology of scientific research programmes, In I. Lakatos and A. Musgrave (eds.), Criticism and the growth of knowledge (pp.91-196). Cambridge, UK: Cambridge University Press.
    Lee, Y., & Law, N. (2001). Explorations in promoting conceptual change in electrical concepts via ontological category shift. International Journal of Science Education, 23(2), 111-149.
    Lijnse, P. (1995). "Developmental research" as a way to an empirically based "didactical structure" of science. Science Education, 79(2), 189-199.
    Lijnse, P. (2000). Didactics of science: The forgotten dimension in science education research? In R. Millar, J. Leach & J. Osborne (Eds.), Improving science education: The contribution of research (pp. 308-326). Buckingham: Open University Press.
    Lijnse, P., & Klaassen, K. (2004). Didactical structures as an outcome of research on teaching-learning sequence. International Journal of Science Education, 26(5), 537-554.
    Linn, M. C., & Songer, N. B. (1991). Teaching thermodynamics to middle school students: What are appropriate cognitive demands? Journal of Research in Science Teaching, 28, 885-918.
    Magnusson, S. J., Boyle, R. A., & Templin, M. (1997). Dynamic science assessment: A new approach for investigating conceptual change. The Journal of the Learning Science, 6(1), 91-142.
    Maichle, U. (1981). Representation of knowledge in basic electricity and its use for problem solving. In Jung, W., Pfundt, H. & Rhoneck, C. von (Eds.), Proceedings of the International Workshop on Problems concerning students’ representation of physics and chemistry knowledge, 14-16 September, Pdeagogische Hochschule, Ludwigsburg, 174-193.
    Mayring, P. (1990). Qualitative inhaltsanalyse [Qualitative analysis of content]. Weinheim: Deutscher Studien Verlag.
    Mheut, M. (2004). Designing and validating two teaching-learning sequences about particle models. International Journal of Science Education, 26(5), 605-618.
    Mheut, M., & Psillos, D. (2000). Designing and validating teaching-learning sequences in a research perspective. Paper presented at the An International Symposium, Paris.
    Mheut, M., & Psillos, D. (2004). Teaching-learning sequences: Aims and tools for science education research. International Journal of Science Education, 26(5), 515-535.
    Mintzes, J. J., & Wandersee, J. H. (1998). Reform and innovation in science teaching: A human constructivist view. In J. J. Mintzes, J. H. Wandersee & J. D. Novak (Eds.), Teaching science for understanding: A human constructivist view (pp. 29-58). San Diego: Academic Press.
    Mintzes, J. J., Wandersee, J. H., & Novack, J. D. (1998). Epilogue: Meaningful learning, knowledge, restructuring, and conceptual change: On ways of teaching science for understanding. In J. J. Mintzes, J. H. Wandersee & J. D. Novak (Eds.), Teaching science for understanding: A human constructivist view. San Diego: Academic Press.
    Mitchell, I. J. (1993). Teaching for quality learning. Unpublished Ph. D. thesis, Monash University.
    Mortimer, E. F. (1993). The evolution of students' explanations for the physical state of matter as a change in their conceptual profile. Paper presented at the European Research in Science Education: Proceedings of the First PhD Summerschool, Utrecht.
    Niedderer, H. (1997). Learning process studies in physics: A review of concepts and results. Paper presented at the American Educational Research Association, Chicago.
    Niedderer, H., & Goldberg, F. (1995, 7th - 11th April). Learning pathway and knowledge construction in electric circuit. Paper presented at the European Conference on Research in Science Education, Leeds, UK.
    Nobes, G., Moore, D. G., Martin, A. E., Clifford, B. R., Butterworth, G., Panagiotaki, G., et al. (2003). Children's understanding of the earth in a multicultural community: Mental models of fragments of knowledge? Developmental Science, 6(1), 72-85.
    Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. Cambridge: Cambridge University Press.
    Nussbaum, J. (1989). Classroom conceptual change: Philosophical perspectives. International Journal of Science Education, 11, 530-540.
    Nussbaum, J., & Novick, S. (1982). Alternative frameworks, conceptual conflict and accomodation: Toward a principled teaching strategy. Instructional Science, 11, 183-200.
    Osborne, R., & Freyberg, R. (1985). Learning in science: The implications of children's science. Auckland: Heinemann.
    Peterson, R. F., Treagust, D. F., Garnett, P. J. (1989). Development and application of a diagnostic instrument to evaluate grade 11 and 12 students’ oncepts of covalent bonding and structure following a course of instruction. Journal of Research in Science Teaching, 26, 301-314.
    Pfundt, H. & Duit, R. (2004, April). Bibliography – STCSE.
    Pfundt, H., & Duit, R. (1994). Bibliography- Students alternative frameworks and science education. Kiel, Germany: University of Kiel Institute for Science Education.
    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.
    Psillos, D., & Mheut, M. (2001). Teaching-learning sequences as a means for linking research to development. Paper presented at the Proceedings of the Third International Conference on Science Education Research in the Knowledge Based Society, Thessaloniki.
    Psillos, D., Koumaras, P. & Tiberghien, A. (1988). Voltage presented as a primary concept on DC circuits. International Journal of Science Education, 10(1), 29-43.
    Psillos, D., Koumaras, P., & Valassiades, O. (1987). Students' representations of electric current before, during and after instruction on DC circuits. Journal of Research in Science and Technological Education, 5, 185-189.
    Rabardel, P. (1995). Les hommes et les technologies. Armand Colin, Paris.
    Rasmussen, J. (1986). Information processing and human-machine interaction. North-Holland, Elsevier, Science, Amsterdam.
    Saxena, A. B. (1992). An attempt to remove misconceptions related to electricity. International Journal of Science Education, 12(4), 457-471.
    Schwedes, H. (1984). The importance of water circuits in teaching electric circuits. In Duit, R., Jung, W. & von Rhoneck, C. (Eds.), Aspects of Understanding Electricity, Proceedings of the International Workshop, 10-14 September, Ludwigsburg (Schmidt and Klauning, Kiel, 1985); IPN-Arbeitsberichte, 59: 319-329.
    Schwedes, H., & Dudeck, W.-G. (1996). Teaching electricity by help of a water analogy. In G. Welford, J. Osborne & P. Scott (Eds.), Research in Science Education in Europe. London/ Washington, D. C.: Falmer Press.
    Schwedes, H., & Schmidt, D. (1992). Conceptual change and theoretical comments. Paper presented at the Research in Physics Learning: Theoretical Issues and Empirical Studies, Kiel.
    Scott, P. H., Asoko, H., M., & Driver, R. H. (1992). Teaching for conceptual change: A review of strategies. Paper presented at the Theoretical issues and empirical studies. Proceedings of an international workshop in Bremen, IPN.
    Sr, M.-G., & Chomat, A. (1983) Les reprsentations des lves de sixime et leur volution. Etat gazeux. Rapport de l’quipe parisienne de la recherche: tude des reprsentations pralables de quelques notions de physique et leur volution (Paris: INRP et LIRESPT), 19–32.
    Shepardson, D. P., & Moje, E. B. (1994). The nature of fourth graders' understandings of electric circuits. Science Education, 78(5), 489-514.
    Sheskin, D. (1997). Handbook of Parametric and Nonparametric Statistical Procedures. Boca Raton, Fla. : CRC Press.
    Shipstone, D. M. (1984). A study of children's understanding of electricity in simple DC circuits. European Journal of Science Education, 6(2), 185-188.
    Shipstone, D. M. (1985). Electricity in simple circuits. In R. Driver, Guesne, E. , Tiberghien, A. (Ed.), Children's ideas in science (pp. 33-51). Milton Keynes: Open University Press.
    Slotta, J. D., & Chi, M. T. H. (1996). Understanding constraint-based process: A precursor to conceptual change in physics. Paper presented at the Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society, Mahwah, NJ.
    Slotta, J. D., Chi, M. T. H., & Joran, E. (1995). Assessing students' misclassifications of physics concepts: An ontological basis for conceptual change. Cognition and Instruction, 13(3), 373-400.
    Solomon, J. (1993). The social construction of children’s scientific knowledge. In P. J. Black &A. M. Lucas (Eds.), Children’s informal ideas in science. New York: Routledge.
    Stavy, R., & Berkovitz, B. (1980). Cognitive conflict as a basis for teaching quantitative aspects of the concept of temperature. Science Education, 64, (5), 679-692.
    Steffe, L. P. (1983). The teaching experiment methodology in a constructivist research program. Paper presented at the Proceedings of the Fourth International Cogress on Mathematical Education, Boston.
    Steffe, L. P., & D' Ambrosio, B. (1996). Using teaching experiments to enhance understand students' mathematics. In D. F. Treagust, D. R & B. J. Fraser (Eds.), Improving Teaching and Learning in Science and Mathematics (pp. 65-76). New York: Teacher College Press.
    Strike, K. A., & Posner, G. J. (1992). A revisionist theory of conceptual change. In R. Duschl & R. Hamilton (Eds.), Philosophy of science, cognitive science and educational theory and practice. Albany, NY: SUNY Press.
    Swofford, D. L., & Olsen, G. J. (1990). Phylogeny reconstruction. In D. M. Hills & C. Moritz (Eds.), Molecular systematics. Sunderland, Massachusetts: Sinauer.
    Taber, K. S. (2001). Shifting sands: A case study of conceptual development as competition between alternative conceptions. International Journal of Science Education, 23(7), 731-753.
    Tao, P.-K., & Gunstone, R. (1999). The process on conceptual change in force and motion during computer-supported physics instruction. Journal of Research in Science Teaching, 36(7), 859-882.
    Terry, C., & Jones, G. (1986). Alternative frameworks: Newton's third law and conceptual change. European Journal of Science Education, 8(3), 291-298.
    Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
    Thiis, G. D. (1992). Evaluation of an introductory course on 'force' considering students' preconceptions. Science Education, 76(2), 155-174.
    Thorley, N., & Woods, R. (1997). Case studies of students' learning as action research on conceptual change teaching. International Journal of Science Education, 19(2), 229-245.
    Tiberghien, A. (1980). Modes and conditions of learning-An example: The learning of some aspects of the concept of heat. In Archenhold et al. (Ed.) Cognitive development, Research in Science and Mathematics, Proc. of an Int. Seminar, University of Leeds.
    Tiberghien, A. (1983). Critical review of research concerning the meaning of electric circuits for students aged 8 to 20 years. In Research on Physics Education, Proceedings of the First International Workshop, 23 June-13 July, La Londe les Maures, France, Editions du Centre National de la Recherche Scientifique, Paris (1984), 109-123.
    Tiberghien, A. (1994). “Modelling as a basis for analyzing teaching-learning situations.” Learning and Instruction, 4, 71-87.
    Toulmin, S. (1972). Human understanding: The collective use and evolution of concepts. Princeton, New Jersey: Princeton University Press.
    Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10(2), 159-169.
    Treagust, D. F. (1995). Diagnostic assessment of students’ science knowledge. In S. M. Glynn, & R. Duit. (Eds.), Learning science in the schools: Research reforming practice, 327-346. New Jersey: Lawrence Erlbaum Associates.
    Treagust, D. F., Harrison, A., Venville, G., & Dagher, Z. (1996). Using an analogical teaching approach to engender conceptual change. International Journal of Science Education, 18, 213-229.
    Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81, 387-404.
    Tytler, R. (1998). Children's conceptions of science education. International Journal of Science Education, 20(8), 929-958.
    Viennot, L. (1996). Raisonner en physique, la part du sens commun. Bruxelles: De Boeck.
    Viennot, L., & Rainson, S. (1999). Design and evaluation of a research-based teaching sequence: the superposition of electric field. International Journal of Science Education, 21, 1-16.
    Villani, A. (1992). Conceptual change in science and science education. Science Education. 76, 223–237.
    Vollmer, G. (1987). Hirzel verlag, birkenwaldstraβe 44, 7000 stuttgart 1 printed in Germany.舒遠招譯(1994):進化認識論。武漢大學出版。
    Von Rhoneck, C. (1981). Students’ conceptions of the electric circuit before physics instruction. In Jung, W., Pfundt, H. & Rhoneck, C. von (Eds.), Proceedings of the International Workshop on Problems concerning students’ representation of physics and chemistry knowledge, 14-16 September, Pdeagogische Hochschule, Ludwigsburg, 194-213.
    Von Rhoneck, C. (1984). The instruction of voltage as an independent variable-the importance of preconceptions, cognitive conflict and operating rules. In Duit, R., Jung, W. & von Rhoneck, C. (Eds.), Aspects of Understanding Electricity, Proceedings of the International Workshop, 10-14 September, Ludwigsburg (Schmidt and Klauning, Kiel, 1985); IPN-Arbeitsberichte, 59: 275-286.
    Vosniadou, S. (1994). Capturing and modeling the process of conceptual change [special issue]. Learning and Instruction, 4, 45-69.
    Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535-585.
    Vosniadou, S., & Ioannides, C. (1998). From conceptual development to science education: A psychological point of view. International Journal of Science Education, 20(10), 1213-1230.
    Vosniadou, S., & Ioannides, C. (2001). Designing learning environments to promote conceptual change in science. Learning and Instruction., 11, 381-419.
    Vosniadou, S., Skopeliti, I., & Ikospentaki, K. (2004). Modes of knowing and ways of reasoning in elementary astronomy. Cognitive Development, 19, 203-222.
    White, R., & Gunstone, R. (1992). Probing understanding. London: Falmer Press.
    Wiley, E. O., Siegel-Causey, D., Brooks, D. R., & Funk, V. A. (1993). The compleat cladist: Primer of phylogenetic procedures (Vol. 19, Special publication) 2nd. Lawrence: Museum of Natural History.
    Wilson, E.O. (1998). Consilience: the unity of knowledge. Alfred A.Knopf, Inc.
    Zeitoun, H. H. (1984). Teaching scientific analogies: A proposed model. Research in Science and Technology Education, 2, 107-125.

    QR CODE