研究生: |
江翊嘉 CHIANG, Yi-Chia |
---|---|
論文名稱: |
停課不停學—遠距教學學生自我調整學習與程式設計課程學習成效之關係 School Closures, Uninterrupted Learning: The Relationship Between Self-Regulated Learning and Learning Outcomes in Programming Courses under Distance Learning |
指導教授: |
李懿芳
Lee, Yi-Fang |
口試委員: |
宋修德
Sung, Hsiu-Te 曾璧光 Tseng, Pi-Kuang 李懿芳 LEE, Yi-Fang |
口試日期: | 2024/01/28 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系科技應用管理碩士在職專班 Department of Industrial Education_Continuing Education Master's Program of Technological Management |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 130 |
中文關鍵詞: | 遠距教學 、科技接受模式 、自我調整學習 、程式設計 |
英文關鍵詞: | Distance learning, Technology Acceptance Model, Self-regulated learning, Programming |
研究方法: | 調查研究 |
DOI URL: | http://doi.org/10.6345/NTNU202400378 |
論文種類: | 學術論文 |
相關次數: | 點閱:81 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討國內停課不停學期間,使用遠距教學學習程式設計,學生自我調整與程式設計課程學習成效之關係,並以科技接受模式為基礎建構影響模型。研究對象設定在新北市地區國民中學階段學生,並以110學年度八、九年級學生為主,總樣本數為696人。所得量化資料採描述性統計、結構方程式及迴歸等方法進行統計分析。主要研究結論包括:一、學生使用遠距教學學習程式設計課程時,學生知覺線上系統的有用程度、易用程度尚可;二、國內停課不停學期間,學生使用遠距教學學習程式設計課程,自我調整學習能力正向影響程式設計學習成效;三、科技接受模式能有效預測學生使用遠距教學學習程式設計課程時,自我調整學習能力與程式設計學習成效之關係。依據上述研究結論,本研究對學生、老師及家長提供建議,透過學生、老師和家長的共同努力,提升學生在遠距學習中的自我調整學習能力,以期獲得更卓越的程式設計學習成效。
This study aimed to investigate the relationship between students' self-regulation and the learning effectiveness of programming courses through the use of distance learning programs during the period of school closures, unin-terrupted learning. The study constructed an impact model based on the tech-nology acceptance model. The participants were students in junior high schools in the New Taipei City area, with a focus on 8th and 9th-grade stu-dents in the academic year 110, with a total sample size of 696 individuals. Quantitative data were analyzed using descriptive statistics, structural equa-tion modeling, and regression. The main research conclusions include: 1. When students use distance learning programs for programming courses, they perceive the usefulness and ease of use of the online system as accepta-ble. 2.During the period of nationwide school closures and continuous learn-ing, students' use of distance learning programs for programming courses positively influences their self-regulated learning ability and, in turn, affects the learning effectiveness of programming. 3.The technology acceptance model can effectively predict the relationship between students' use of dis-tance learning programs for programming courses, their self-regulated learn-ing ability, and the learning effectiveness of programming. Based on the above research findings, this study provides recommendations for students, teachers, and parents. Through the collaborative efforts of students, teachers, and parents, it is suggested to enhance students' self-regulated learning abili-ties in distance learning, aiming for more outstanding achievements in pro-gramming learning.
王秀鶯(2013)。導入Scratch程式教學對國中生自我效能與學習成就之探究—以程式設計課程為例。國立臺灣科技大學人文社會學報,9(1),1-15。
中華人民共和國中央人民政府(2020)。武漢市新型冠狀病毒感染的肺炎疫情防控指揮部通告。取自:http://www.gov.cn/xinwen/2020-01/23/content_5471751.htm。
中華人民共和國湖北省人民政府(2020)。湖北省新型冠狀病毒感染肺炎疫情防控指揮部通告。取自:https://www.hubei.gov.cn/zhuanti/2020/gzxxgzbd/zxtb/202003/t20200324_2189256.shtml
中華民國行政院主計總處統計(2021)。失業率時間數列統計表按同月分。台北市:行政院主計總處。2021年8月25日,取自:https://www.stat.gov.tw/ct.asp?xItem=37135&ctNode=517&mp=4
吳明隆(2009)。結構方程模式:方法與實務運用。高雄市:麗文。
余泰魁、楊淑斐(2005)。線上學習系統使用意向之模式建構與比較分析研究。台灣管理學刊,5(2),311-337。
岳修平(2001)。非同步教學網頁輔助學習成效之研究。教學科技與媒體,55,27-35。
林益民、余泰魁(2003)。線上學習行為傾向模式建構與實證。資訊管理學報,10(1),205-232。
林菁、李曉媛(2003)。網路教學的媒體呈現方式之研究。教學科技與媒體,65,34-58。
林育慈、吳正己(2016)。運算思維與中小學資訊科技課程。教育脈動,6,5-16。
林幸淇(2018)。應用Code.org於國小三年級程式設計教學之研究(未出版碩士論文)。國立清華大學:新竹市。
邱郁文、林益民、施東河(2007)。系統特性、任務特性與電腦自我效能對個人線上學習行為傾向影響。電子商務學報,9(2),235-266。
施又瑀(2016)。臺灣程式教育的困境與展望。臺灣教育評論月刊,2018,7(9),頁1-8。
洪耀正(2018)。App Inventor 2零基礎創意程式設計。新北市:全華圖書股份有限公司。
唐麗英、王春和(2008)。SPSS統計分析。臺北市:儒林。
高璟瑜(2006)。數位學習-學習的新趨勢,網路社會學通訊期刊,第57期,1-5。
國家高速網路與計算中心(2021)。 台灣COVID-19 疫情每日統計圖(1),取自 https://covid-19.nchc.org.tw/dt_005-covidTable_taiwan.php
國家教育研究院(2016)。新課綱「程式設計」,學邏輯解問題。國家教育研究院電子報,134。取自https://epaper.naer.edu.tw/edm.php?grp_no=2&edm_no=134&content_no=2672
國家發展委員會(2021)。關鍵人才培育及延攬方案(110-113 年)。取自https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvMC8xNDQxNC8zOWQzZTMwZS05ZTM2LTQ4M2EtYTcxMy0xNDUyYmIzOTkxOGQucGRm&n=6Zec6Y215Lq65omN5Z%2B56IKy5Y%2BK5bu25pSs5pa55qGILnBkZg%3D%3D&icon=..pdf
張建一(2020)。新冠肺炎疫情對全球經濟的影響與因應。兩岸經貿月刊,342,8-11。
張春興(1996)。教育心理學—三化取向的理論與實踐。臺北市:臺灣東華書局。
教育部(2020年1月22日)。為因應大陸地區發生「嚴重特殊傳染性肺炎」疫情,以及我國本(109)年1月21日已確診首例境外移入「嚴重特殊傳染性肺炎」個案,請依說明事項辦理相關防治措施,請查照。臺教綜(五)字第1090013442號。
教育部(2020年2月5日)。為因應高級中等學校108學年度第二學期延後至109年2月25日學,有關高三畢業典禮之辦理時程應配合調整,詳如說明,請查照。臺教授國字第1090012477號。
教育部(2021年6月25日)。有關全國高級中等以下學校及各類教育機構配合疫情警戒,第三級延長至110年7月2日。防疫照顧價申請對象與期間,詳如說明,請協助轉知公告請查照。臺教授國字第1100079230號。
教育部國民及學前教育署(2020年2月4日)。有關108學年度各高級中等以下學校第二學期延後至109年2月25日開學一案,詳如說明,請查照。臺教國署國字第1090011636A號。
教育部國民及學前教育署(2020年2月6日)。有關109年國中教育會考考試範圍調整等事項,詳如說明,請查照。臺教授國部字第1090013114號。
教育部國民及學前教育署(2020年2月7日)。因應嚴重特殊傳染性肺炎(武漢肺炎)疫情,有關因公赴大陸地區(含香港及澳門)考察計畫、會議及各項交流活動因應措施說明,請查照轉知並配合辦理。臺教國署字第1090014081號。
教育部國民及學前教育署(2021年5月18日)。有關全國高級中等以下學校學生於110年5月19日(星期三)至110年5月28日(星期五)因應疫情停止到校改採居家線上學習一案,詳如說明,請查照。臺教國署國字第1100062040號。
教育部國民及學前教育署(2021年5月25日)。有關全國高級中等以下學校因應疫情延長學生停止到校上課,採居家線上學習至110年6月14日(星期一)一案,詳如說明,請查照。臺教國署國字第1100065124號。
陳志恆、林清文(2008)。國中學生自我調整學習策略量表之編製及效度研究。輔導與諮商學報,30(2),1-36。
黃孟元、黃嘉勝(1999)。遠距教育的定義,演進及其理論基礎分析。視聽教育雙月刊。40(4),8-18。
新北市政府教育局(2021年5月17日)。為因應新冠肺炎(Covid-19)疫情嚴峻,本市公私立高中職暨國中小,自110年5月18日(星期二)至110年5月28日(星期五)實施停課防疫不到校,請學校務必轉知學生及家長,並維護學生學習權益,請查照。新北教國字第1100953343號。
新北市政府教育局(2021)。2019~2020年新北教育全紀錄。五南書局。
新北市政府教育局(2022)。2021~2022新北教育的100個亮點。五南書局。
楊恩瑞(2019)。影響大學教師採用遠距教學意願之研究-以A科技大學為例(未出版碩士論文)。中國科技大學:臺北市。
溫欣慈,曾秋蓉(2018),以Zenbo 機器人為運算思維學習載具之語音化程式語言,臺灣網際網路研討會。
劉晨鐘(2019)。運算思維與程式設計教育浪潮。人文與社會科學簡訊,20(4),89 - 92。
蔡崇煌、許哲翰、鄭清萬、王任賢(2020)。2019年冠狀病毒疾病(COVID-19)簡介。臺灣醫界,63(5),20 - 29。
蔡進雄(2019)。未來教育新趨勢—各國程式設計教育的動態。國家教育研究院電子報第 181 期。
諄筆群(2021)。停止到校上課是危機也是轉機。點教育,3(1),60-61。
賴和隆(2016)。應用運算思維於高中資訊教學設計之分享。國家教育研究院教育脈動電子期刊,6。
賴宜弘、黃芬芬、楊雪華(2015)。科技接受模式中文版量表之編製與相關研究。亞東學報,(35),201-221。
聯合國教科文組織(2021)。教育:從應對到恢復,取自 https://zh.unesco.org/covid19/educationresponse
蘇晉輝、盧東華(2019年11月)。MakeCode for micro:bit結合開發板及模擬器提升學生學習成效與態度研究-以新北市某國小學生為例。NCS 2019 全國計算機會議發表之論文。國立金門大學。
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215. https://doi.org/10.1037/0033-295X.84.2.191
Bandura, A. (1982a). Self-efficacy mechanism in human agency. American Psychologist, 37. 122-147.
Bandura, A. (1986). Social foundations of thought and action: A social cog-nitive theory. Englewood Cliffs, NJ: Prentice-Hall.
Bandura, A., & Walters, R. H. (1977). Social learning theory(Vol. 1). Pren-tice Hall: Englewood cliffs.
Benson, A. (2002). Using online learning to meet workforce demand: A case study of stakeholder influence. Quarterly Review of Distance Education, 3(4), 443–452.
Brecht, H. D., & Ogilby, S. M. (2008). Enabling a comprehensive teaching strategy: Video lectures. Journal of Information Technology Education: Innovations in Practice, 7, 71–86. Retrieved from http://www.jite.org/documents/Vol7/JITEV7IIP071-086Brecht371.pdf
Brünken, R., Plass, J. L., and Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educ. Psychol. 38: 53–62.
Chang, M.-M. (2005). Applying self-regulated learning strategies in a web-based instruction: An investigation of motivation perception. Computer Assisted Language Learning, 18(3), 217–230. https://doi.org/10.1080/09588220500178939
Chen, C. M., & Wu, C. H. (2015). Effects of different video lecture types on sustained attention, emotion, cognitive load, and learning performance. Computers & Education, 80, 108–121.
Corno, L., & Mandinach, E. B. (1983). The role of cognitive engagement in classroom learning and motivation. Educational Psychologist, 18(2), 88–108. https://doi.org/10.1080/00461528309529266
Davis, D. (1989). Perceived usefulness, perceived ease of use, and user ac-ceptance of information technology. MIS Quarterly, 319-340.
de Barba, P. G., Kennedy, G. E., & Ainley, M. D. (2016). The role of stu-dents’ motivation and participation in predicting performance in a MOOC. Journal of Computer Assisted Learning, 32(3), 218–231. https://doi.org/10.1111/jcal.12130
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Market-ing Research, 18(1), 39-50.
Gillis A, Krull LM (2020). COVID-19 remote learning transition in spring 2020: class structures, student perceptions, and inequality in college courses. Teaching Sociology. 48(4), 283–299. https://doi.org/10.1177/0092055X20954263
Hair, Jr., JF, Black, WC, Babin, BJ, Anderson, RE, Tatham, RL (2006). Multivariate data analysis(6th Ed.)Upper Saddle River, NJ: Pearson-Prentice Hall.
Hair, J. F., Ortinau, D. J., & Harrison, D. E. (2010). Essentials of marketing research (Vol. 2). New York, NY: McGraw-Hill/Irwin.
Holzer, J., Lüftenegger, M., Korlat, S., Pelikan, E.R., Salmela‐Aro, K., Spiel, C., & Schober, B. (2021). Higher Education in Times of COVID-19: University Students’ Basic Need Satisfaction, Self-Regulated Learning, and Well-Being. Aera Open, 7.
Huang C, Wang Y, Li X, et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. 395(10223), 497-506.
Johns Hopkins University Coronavirus Resource Center. (2022). Covid-19 Dashboard. Retrieved from https://coronavirus.jhu.edu/map.html
Li, Y., Duan, Y., Fu, Z., & Alford, P. (2012). An empirical study on behav-ioral intention to reuse e-Learning systems in rural China. British Jour-nal of Educational Technology, 43, 933–948.
Mateo-Urdiales, A., Fabiani, M., Rosano, A., Vescio, M. F., Del Manso, M., Bella, A., Riccardo, F., Pezzotti, P., Regidor, E., & Andrianou, X. (2021). Socioeconomic patterns and COVID-19 outcomes before, during and after the lockdown in Italy (2020). Health & place, 71, 102642. https://doi.org/10.1016/j.healthplace.2021.102642
Moore, M., & Kearsley, G. (2012). Distance education: A systems view of online learning (3rd ed.). Belmont, CA: Wadsworth.
Murphy, M. P. A. (2020). COVID-19 and emergency eLearning: Conse-quences of the securitization of higher education for post-pandemic ped-agogy. Contemporary Security Policy, 41(3), 492–505. https://doi.org/10.1080/13523260.2020.1761749
Newman, R. (1994). Academic help-seeking: A strategy of self-regulated learning. In D. H. Schunk & B. J. Zimmerman (Eds.), Self-regulation of learning and performance: Issues and educational applications (pp. 283-301). Hillsdale, NJ: Erlbaum.
Oxford Economics (2012). Global Talent 2021. https://www.oxfordeconomics.com/Media/Default/Thought%20Leadership/global-talent-2021.pdf?fbclid=IwAR376lZ2Hb9Nb1c3ph2tFSlbnqftLS4yQoFnBnC5Qdkl4YBVomVFHQrTxak
Paechter, M., Maier, B. (2010). Online or face-to-face? Students’ experienc-es and preferences in e-learning. The Internet and Higher Education, 13(4), 292–297. https://doi.org/10.1016/j.iheduc.2010.09.004
Pekrun, R. (2006). The control-value theory of achievement emotions: As-sumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18(4), 315–341. https://doi.org/10.1007/s10648-006-9029-9
Pintrich, P.R. (2000). The role of goal orientation in self-regulated learning, Handbook of Self-regulation: Theory, research, and applications, 45-502. San Diego, CA: Academic Press.
Pintrich, P. R. (2004). A conceptual framework for assessing motivation and self-regulated learning in college students. Educational Psychology Re-view, 16(4), 358-407.
Portway, P. S., & Lane, C. (1994). Guide to teleconferencing and distance learning. Applied Business.
Rafique, W., Dou, W., Hussain, K., & Ahmed, K. (2020). Factors Influenc-ing Programming Expertise in a Web-based E-learning Paradigm. Online Learning, 24(1). https://doi.org/10.24059/olj.v24i1.1956
Reuters (2020). Two first coronavirus cases confirmed in Italy: prime minis-ter. Retrieved 31, July, 2021, from https://www.reuters.com/article/us-china-health-italy/two-first-coronavirus-cases-confirmed-in-italy-prime-minister-idUSKBN1ZT31H.
Rivers, D. J., Nakamura, M., & Vallance, M. (2021). Online Self-Regulated Learning and Achievement in the Era of Change. Journal of Educational Computing Research. https://doi.org/10.1177/07356331211025108
Ryan, A., & Pintrich, P. R. (1997). "Should I ask for help?" The role of mo-tivation and attitudes in adolescents' help seeking in math class. Journal of Educational Psychology, 89, 329-341.
S.C. Kong, M.M. Chiu, M. Lai. (2018). A study of primary school students' interest, collaboration attitude, and programming empowerment in com-putational thinking education. Computers & Education, 127 (2018), pp. 178-189, 10.1016/j.compedu.2018.08.026
Shirish, A., Chandra, S., & Srivastava, S. C. (2021). Switching to online learning during COVID-19: Theorizing the role of IT mindfulness and techno eustress for facilitating productivity and creativity in student learning. International Journal of Information Management, 61, 102394. doi:10.1016/j.ijinfomgt.2021.102394
Sulisworo, D., Fitrianawati, M., Maryani, I., Hidayat, S., Augusta, E., & Sa-putri, W. (2020). Students’ self-regulated learning (SRL)profile dataset measured during Covid-19 mitigation in Yoyuakarta Indonesia. Data in Brief, 33, 106422. https://doi.org/10.1016/j.dib.2020.106422
Tsai, M. J., Wang, C. Y., & Hsu, P. F. (2019). Developing the computer programming self-efficacy scale for computer literacy education. Jour-nal of Educational Computing Research, 56(8), 1345–1360.
Venkatesh, V. & Davis, F. D., (2000). A Theoretical Extension of the Tech-nology Acceptance Model: Four Longitudinal Field Studies. Manage-ment Science, 46(2), 186-204.
Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Sciences, 39(2), 273-315.
Weiner, B. (1986). An attributional theory of motivation and emotion. New York: Springer- Verlag.
WHO. (2020a). WHO Coronavirus (COVID-19)Dashboard. Retrieved 31, July, 2021, from https://covid19.who.int/
WHO. (2020b). Timeline: WHO's COVID-19 response. Retrieved 31, July, 2021, from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline/
Wing, J. M. (2006). Computational thinking. Communications of the Acm, 49(3), 33-35.
Wolters, C. (1998). Self-regulated learning and college students' regulation of motivation. Journal of Educational Psychology, 90, 224-235.
Yen, S. C., Lo, Y., Lee, A., & Enriquez, J. (2018). Learning online, offline, and in-between: Comparing student academic outcomes and course sat-isfaction in face-to-face, online, and blended teaching modalities. Edu-cation and Information Technologies, 23, 2141-2153. Retrieved from https://doi.org/10.1007/s10639-018-9707-5
Zeidner, M. (1998). Test anxiety: The state of the art. New York: Plenum.
Zimmerman, B. J. (1989). A social cognitive view of self-regulated academic learning. Journal of Educational Psychology, 81, 329–339. doi:10.1037/0022-0663.81.3.329
Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive per-spective. In M. Boekaerts, P. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 13–39). San Diego, CA: Academic Press.
Zimmerman, B. j., & Martinez-Pons, M. (1986). Development of a structured interview for assessing student use of self-regulated learning strategies. American Educational Research Journal, 23, 614-628. Zimmerman, B. J., & Martinez
Zimmerman, B.J., & Bandura, A. (1994). Impact of self-regulatory influ-ences on writing course attainment. American Educational Research Journal, 31, 845-862
Zimmerman, B. J. (1998). Developing self-fulfilling cycles of academic reg-ulation: An analysis of exemplary instructional models, in D. H. Schunk & B. J. Zimmerman (Eds.), Self-regulated learning: From teaching to self-reflective practice (pp. 1-19). New York: Guilford.
Zimmerman, B. J., Magda C. (2003). Motivating self-regulated problem solvers. The psychology of problem solving: 233-262.
Zhu, Y., Zhang, J. H., Au, W., & Yates, G.(2020). University students’ online learning attitudes and continuous intention to undertake online courses: A self-regulated learning perspective. Educational Technology Research and Development, 68(3), 1485–1519. https://doi.org/10.1007/s11423-020-09753-w