研究生: |
劉志杰 Lao, Hans Brynner |
---|---|
論文名稱: |
The tensor to scalar ratio in primordial inflation with thermal dissipation The tensor to scalar ratio in primordial inflation with thermal dissipation |
指導教授: |
李沃龍
Lee, Wo-Lung |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 76 |
中文關鍵詞: | cosmology 、big bang 、inflation 、warm inflation |
英文關鍵詞: | cosmology, big bang, inflation, warm inflation |
DOI URL: | https://doi.org/10.6345/NTNU202203016 |
論文種類: | 學術論文 |
相關次數: | 點閱:69 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無中文摘要
Inflationary theory is the prime candidate for solving the flatness, horizon, monopole problem that are encountered in the standard Big Bang, it also provides a way for seeding the large scale structure that we see today. In this thesis we study the behavior of the tensor to scalar ratio in the context of warm inflation where there is a dissipation present due to the interaction between the inflaton and other fields which are neglected in the standard cold inflation. We will also provide another approach on determining the observables during inflation by solving the evolution of the quantities in question. The tensor to scalar ratio can be approximated using the slow-roll parameters, this in turn can be used to check the authenticity of the approach taken. We fix the number of e-folding to be 60 before the end of inflation.
Bibliography
[1] M. Livio and A. Riess. Measuring the Hubble constant. Phys. Today 66(10)
41, 2013
[2] A. Liddle. Introduction to Modern Cosmology. John Wiley, 2015
[3] B. Schutz. A First Course in General Relativity. Cambridge University Press, 2009
[4] S. Carroll. Spacetime and Geometry: An Introduction to General Relativity.
Pearson, 2003
[5] D. Baumann. TASI Lectures on Inflation. arXiv:0907.5424, 2009
[6] A. Linde. Hybrid Inflation. Phys. Rev. D 49,748, 1994
[7] B. Bassett, S. Tsujikawa, and D. Wands. Inflation Dynamics and Reheating. Reviews of Modern Physics, vol 78, no. 2, pp. 537-589, 2006
[8] L.Z. Fang and A. Berera. Thermally Induced Density Perturbations in the Inflation Era. Phys. Rev. Lett. 74, 1912, 1995
[9] A. Berera. Warm Inflation. Physical Review Letters, 75, 18, p. 3218-3221, 1995
[10] A. Berera. Warm inflation in the adiabatic regime - A model, an existence proof for inflationary dynamics in quantum field theory. Nuclear Physics
B, 585, 3, p. 666-714, 2000
[11] M. Gil and A. Berera. Warm Inflation Model Building. International Journal of Modern Physics A, 24, p. 2207-2240, 2009
[12] R. Ramos and L. da Silva. Power spectrum for inflation models with quantum and thermal noises. Journal of Cosmology and Astroparticle Physics (03)032, 2013
[13] Øyvind Grøn. Warm Inflation. Universe, 2, 20, 2016
[14] Planck collaboration Planck 2015 results XX. Constraints on Inflation. arXiv:1502.02114, 2015
[15] E. Komatsu and T. Futamase Constraints on the chaotic inflationary scenario with a nonminimally coupled ”inflaton” field from the cosmic microwave background radiation anisotropy. PhysRevD.58.023004, 1998
[16] A. Taylor and A. Berera. Perturbation spectra in the warm inflationary scenario. Phys.Rev. D62 083517, 2000
[17] S. Bartrum, A. Berera, and J. Rosa. Fluctuation-dissipation dynamics of cosmological scalar fields. Phys. Rev. D 91, 083540
[18] L. Hall, I. Moss, and A. Berera. Scalar perturbation spectra from warm inflation. Phys.Rev. D69 083525, 2004
[19] W.L. Lee and L.Z. Fang. Mass Density Perturbations from Inflation with Thermal Dissipation. Phys.Rev. D59 083503, 1999
[20] M. Gil, A. Berera, R. Brandenberger, I. Moss, R. Ramos, J. Rosa. The role of fluctuation-dissipation dynamics in setting initial conditions for inflation. arXiv:1612.04726
[21] F.C. Adams, K. Freese, and A. Guth. Constraints on the scalar field potential in inflationary models. Phys. Rev. D 43 965, 1991