研究生: |
任政宏 JEN, CHENG-HUNG |
---|---|
論文名稱: |
設計與合成 1-Deazauridine 的衍生物作為研究 OMP Decarboxylase 機制的探針 Design and Synthesis of 1-Deazauridine Derivatives as Mechanistic Probes for OMP Decarboxylase |
指導教授: | 簡敦誠 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 111 |
中文關鍵詞: | 核酸 、脫羧基反應 |
英文關鍵詞: | 1-Deazauridine, OMP Decarboxylase |
論文種類: | 學術論文 |
相關次數: | 點閱:102 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文第一部分主要是根據 6-cyanouridine 5’-monophosphate (6-CN-UMP) 在 orotidine 5’-monophosphate decarboxylase (ODCase) 催化下轉換成 barbiturate nucleoside 5’- monophosphate (BMP) 的反應,設計以 6-cyano-1,3-dimethyluracil 作為模型反應的起始物,希望藉由其與各種親核試劑反應結果,推測出 ODCase 催化 6-CN-UMP 轉換成 BMP 的可能機制。當 6-cyano-1,3-dimethyluracil 與多種親核試劑反應時,例如 NaOMe, n-BuNH2 等,實驗結果發現會得到六位取代的產物,所以推測 ODCase 催化 6-CN-UMP 轉換成 BMP 的反應也是經由直接取代而產生。
第二部份則是酵素受質及產物類似物的合成,希望建立系統化的方法合成出 1-deazauridine 的 C-nucleoside 衍生物。我們以 3,5 -dibromo-2,6-dimethoxypyridine 作為起始物,在 n-BuLi 作用下與 ribonolactone 衍生物進行加成反應得到 hemiacetal 衍生物,再利用 Et3SiH 和 BF3 . Et2O 將其去羥基還原得到 ribonucleoside 衍生物, α/β 比例為 1.25/1 , β isomer 以管柱層析分離純化出。將 β form 產物醣上的保護基移除後得到產物 1-(5-bromo-2,6-dimethoxypyridine- 3-yl)-β-D-ribofuranose。後續的去甲基保護,由於產物的不穩定以及純化的困難,未能得到預期的產物。未來希望可以利用合成1-deazauridine 相同的方法合成出更多 1-deazauridine 衍生物。
Based on the catalytic reaction that orotidine 5’-monophosphate decarboxylase (ODCase) transformed 6-cyanouridine 5’-monophosphate (6-CN-UMP) into barbiturate nucleoside 5’-monophosphate (BMP), we designed 6-cyano-1,3-dimethyluracil as a chemical model and analyzed its reactions toward various nucleophilic conditions. When 6-cyano-1,3- dimethyluracil reacted with some nucleophiles, such as sodium methoxide or n-butylamine, 6-substituded products were obtained, which allowed us to assume that ODCase transformed 6-CN-UMP into BMP through nucleophilic hydrolysis pathway.
In the second part, we hope to establish a feasible pathway for the synthesis of 1-deazauridine derivatives. 3,5-Dibromo-2,6-dimethoxy- pyridine was treated with n-butyllithium and then reacted with ribonolactone derivative to give the corresponding hemiacetal. The hemiacetal was reductively dehydroxylated with triethylsilane and borontrifluoride ethyletherate to give the ribonucleoside derivative with an α/β ratio of 1.25/1. The β isomer was purified by flash column chromatography. The removal of protecting groups on the sugar afforded 1-(5-bromo-2,6-dimethoxypyridin-3-yl)-β-D-ribofuranose. Attempts for demethylation were unsuccessful possibly due to the instability of 1-deazauridine. In summary, we have established a feasible pathway for the synthesis of 1-deazauridine derivatives.
1. Radzicka, A.; Wolfenden, R. A proficient enzyme. Science 1995, 267, 90-93.
2. Levine, H. L.; Brody, R. S.; Westheimer, F. H. Inhibition of orotidine-5’-phosphate decarboxylase by 1-(5’-phospho-β-D- ribofuranosyl)barbituric acid, 6-azauridine 5’-phosphate, and uridine 5’-phosphate. Biochemistry 1980, 19, 4993-4999.
3. Ringer, D. P.; Howell, B. A.; Etheredge, J. L. Alteration in de novo
pyrimidine biosynthesis during uridine reversal of pyrazofurin
-inhibited DNA synthesis. J. Biolchem. Toxicol. 1991, 6, 19-27.
4. Cadman, E. C.; Dix, D. E.; Handschumacher, R. E. Clinical,
biological and biochemical effect of pyrazofurin. Cancer Res. 1978,
38, 682-698.
5. Houk, K. N.; Tantillo, D. J.; Stanton, C.; Hu, Y. F. What have theory and crystallography revealed about the mechanism of catclysis by orotidine monophosphate decarboxylase? Top. Curr. Chem. 2003, 238, 1-22.
6. Silverman, R. B.; Groziak, M. P. Model chemistry for a covalent mechanism of action of orotidine 5’-phosphate decarboxylase. J. Am. Chem. Soc. 1982, 104, 6434-6439.
7. Acheson, S. A.; Bell, J. B.; Jones, M. E.; Wolfenden, R. Orotidine-5’- monophosphate decarboxylase catalysis-kinetic isotope effects and the state of hybridization of a bound transition-state analog. Biochemistry 1990, 29, 3198-3202.
8. Shostak, K.; Jones, M. E. Orotidylate decarboxylase-insights into the catalytic mechanism from substrate-specificity studies. Biochemistry 1992, 31, 12155-12161.
9. Wu, N.; Pai, E. F. Crystal structures of inhibitor complexes reveal an alternate bindingmode in orotidine-5’-monophosphate decarboxylase. J. Biol. Chem. 2002, 277, 28080-28087.
10. Houk, K. N.; Lee, J. K.; Tantillo, D. J.; Bahmanyar, S.; Hietbrink, B. N. Crystal structures of orotidine monophosphate decarboxylase: Dose the structure reveal the mechanism of nature’s most proficient enzyme? Chembiochem. 2001, 2, 113-118.