研究生: |
黃雅惠 Huang, Ya-Hui |
---|---|
論文名稱: |
應用軟體工具輔助國中學生學習剖面圖 Applying a Software Tool to Support Middle School Students Learning Sectional View |
指導教授: |
吳正己
Wu, Cheng-Chih |
口試委員: |
林育慈
Lin, Yu-Tzu 游志弘 Yu, Chi-Hung 吳正己 Wu, Cheng-Chih |
口試日期: | 2023/07/28 |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 剖面圖 、平板電腦 、視覺化軟體 、國中學生 |
英文關鍵詞: | Sectional View, Tablet Computers, Visualization Software, Middle School Students |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202301631 |
論文種類: | 代替論文:技術報告(應用科技類) |
相關次數: | 點閱:91 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本技術報告開發一套國中剖面圖學習教材,透過視覺化軟體學習工具,降低學生空間想像時的困難,以幫助學生學習立體剖面圖。
本技術報告的創新之處在於所發展的剖面圖軟體學習工具,可以讓學生在手機或平板電腦上使用,有別於一般僅能使用於桌上型電腦環境。設計之學習教材主要包括剖面圖軟體學習工具及學習單,剖面圖軟體學習工具可讓學生觀察剖切立體時,剖面圖隨著剖切角度不同而產生的動態變化,幫助學生透視及理解剖面圖;剖面圖學習單則是讓學生回答剖面圖練習問題,然後再使用軟體學習工具觀察、驗證答案是否正確,藉以修正自己想像與實際剖面圖的差異處,並進行概念統整與歸納活動,進而增進空間想像能力。
研究者將所設計之學習教材於南部某國中試教,44位七年級學生參與此教學,實施時間為四節課。試教中蒐集學生填寫的學習單、剖面圖測驗、課後問卷等,以及研究者填寫的課堂觀察紀錄表進行分析。課程實施結果如下:(1)所開發的剖面圖軟體學習工具能於平板電腦正常運作,達到預期設計之目標;(2)剖面圖軟體學習工具及學習單有助學生學習剖面圖。未來可進一步改進事項,包括:本學習教材略艱深,可能更適合國中八年級學生使用;應提供學生更多的時間熟悉軟體學習工具使用;改良剖面圖測驗,以利瞭解、分析學生如何想像剖面圖。
This technical report develops teaching materials to help middle students learn sectional view in geometry. A visualization software tool was developed to assist students imagining the sectional view of a three-dimension object.
The innovation of this technical report lies in the developed visualization software tool works on mobile phones or tablet computers, instead of on desk computers. Two teaching materials were designed, including the sectional view software learning tool and the sectional view worksheet. The sectional view visualization software tool allows students to observe the dynamic changes of the sectional view through the changing angles of a section. The worksheet leads students to find out the difference between their imaginary answer and the correct answer observed from the software, in turn, help them to understand and to be able to mentally imagine the sectional view.
The teaching materials were tested in a middle school in southern Taiwan with 44 seventh-grade students participated in the class. Four class hours were conducted. We collected data from students answered worksheets, sectional view exams, questionnaires, and teacher reflected classroom observation sheets. The following results were obtained: (1) The sectional view visualization software tool developed in this report functioned well on tablet computers and fits its designed goals. (2) The software tool is beneficial for students in learning sectional view. We suggested that the teaching materials are more suitable for using by eighth-grade students, more time needed for students to be familiar with the software tool, and sectional view exams should be revised so that students’ actual understanding of the concept can be revealed.
李政憲、蘇進發、陳昭地 (2014)。長方體被平面截出三角錐各面面積間的平方關係。科學教育月刊,369,21-30。
柯志明 (2014)。 https://www.geogebra.org/u/orchiming。
陳梅仙 (2018)。數學科教師共備手冊-高中課程-圓錐曲線。數學新世界,1-15。
教育部 (2010)。國民中小學九年一貫課程綱要數學學習領域。https://cirn.moe.edu.tw/Upload/file/742/67260.pdf
教育部 (2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校數學領域。https://www.k12ea.gov.tw/
教育部 (2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校自然科學領域。https://www.k12ea.gov.tw/
Appelle, S. (1972). Perception and discrimination as a function of stimulus orientation: The “oblique effect” in man and animals. Psychological Bulletin, 78(4), 266-278. https://doi.org/10.1037/h0033117
Aytaç Kurtuluş (2019). Spatial Visualization Training Using Computer-Aided Cross Sections of Surfaces. European Journal of Education Studies, 6(4), 180-196. https://doi.org/10.5281/zenodo.3339227
Brinkmann, E. H. (1966). Programmed instruction as a technique for improving spatial visualization. Journal of Applied Psychology, 50(2), 179-184. https://doi.org/10.1037/h0023068
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge University Press Cambridge; New York. https://doi.org/10.1017/CBO9780511571312
CEEB Special Aptitude Test in Spatial Relations, developed by the College Entrance Examination Board, USA, 1939.
Cohen, C. A. & Hegarty, M. (2007). Sources of difficulty in imagining cross sections of 3D objects. In D. S. McNamara, & J. G. Trafton (Eds.), Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society (pp. 179-184). Austin TX:Cognitive Science Society.
Cohen, C. A., & Hegarty, M. (2012). Inferring cross sections of 3D objects: A new spatial thinking test. Learning and Individual Differences, 22(6), 868-874.
Ekstrom, R. B., French, J. W., & Harman, H. H. (1976). Manual for kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service.
French, J. W. (1951). The Description of Aptitude and Achievement Tests in Terms of Rotated Factors. Psychometric Monographs 5.
GeoGebra. (2001). https://www.geogebra.org/
Gerson, H., Sorby, S., Wysocki, A., & Baartmans, B. (2001). The development and assessment of multimedia software for improving 3-D spatial visualization skills. Computer Applications in Engineering Education, 9(2), 105-113. https://doi.org/10.1002/cae.1012
Hegarty, M., Keehner, M., Cohen, C., Montello, D. R., & Lippa, Y. (2007). The role of spatial cognition in medicine: Applications for selecting and training professionals. In G. L. Allen (Ed.), Applied Spatial Cognition (pp. 285-315). Mahwah, NJ: Lawrence Erlbaum Associates.
Hegarty, M. & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32, 175-191.
Huk, T. (2006). Who benefits from learning with 3D models? The case of spatial ability. Journal of Computer Assisted Learning, 22(6), 392-404. https://doi.org/10.1111/j.1365-2729.2006.00180.x
Kahle, J. B. (1983). The disadvantaged majority: Science education for women. AETS Outstanding Paper for 1983, Burlington, NC, Carolina Biological Supply Company.
Kali, Y., & Orion, N. (1996). Spatial abilities of high-school students in the perception of geologic structures. Journal of Research in Science Teaching, 33(4), 369-391. https://doi.org/10.1002/(SICI)1098-2736(199604)33:4<369::AID-TEA2>3.0.CO;2-Q
Katsioloudis, P., Jovanovic, V., & Jones, M. (2016). Application of visual cues on 3D dynamic visualizations for engineering technology students and effects on spatial visualization ability: A quasi-experimental study. Engineering Design Graphics Journal, 80(1), 1-17.
Lajoie, S. (2003). Individual differences in spatial ability: Developing technologies to increase strategy awareness and skills. Educational Psychologist, 38(2), 115-125. https://doi.org/10.1207/S15326985EP3802_6
Learning Resources. http://ww1.learningresourses.com/
Lewalter, D. (2003). Cognitive strategies for learning from static and dynamic visuals. Learning and Instruction, 13(2), 177-189. https://doi.org/10.1016/S0959-4752(02)00019-1
Linn, M.C., & Petersen, A.C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479-1498. https://doi.org/10.2307/1130467
Lord, T. R. (1985). Enhancing the visuo-spatial aptitude of students. Journal of Research in Science Teaching, 22(5), 395-405. https://doi.org/10.1002/tea.3660220503
Maier, P. H. (1994). Raeumliches vorstellungsvermoegen. Frankfurt a.M., Berlin, Bern, New York, Paris, Wien: Lang.
Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent variable analysis. Journal of Experimental Psychology: General, 130(4), 621-640. https://doi.org/10.1037/0096-3445.130.4.621
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston: NCTM.
National curriculum in England: mathematics programmes of study. (2021). Statutory guidance. https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study/national-curriculum-in-england-mathematics-programmes-of-study
Orion, N., Ben-Chaim, D., & Kali, Y. (1997). Relationship between earth science education and spatial visualization. Journal of Geoscience Education, 45, 129-132. https://doi.org/10.5408/1089-9995-45.2.129
Pani, J. R., Zhou, H., & Friend, S. M. (1997). Perceiving and imagining Plato's solids: The generalized cylinder in spatial organization of 3D structures. Visual Cognition, 4(3), 225-264. https://doi.org/10.1080/713756763
Pittalis, M., & Christou, C. (2010). Types of reasoning in 3D geometry thinking and their relation with spatial ability. Educational Studies in Mathematics, 75(2), 191-212. https://doi.org/10.1007/s10649-010-9251-8
Plantenberg, K. (2013). Engineering Graphics Essentials with AutoCAD 2014 Instruction. Mission, KS SDC Publications.
Quaiser-Pohl, C. (2003). The mental cutting test "schnitte" and the picture rotation test- two new measures to assess spatial ability. International Journal of Testing, 3(3), 219-231. https://doi.org/10.1207/S15327574IJT0303_2
QuickMARK. http://www.quickmark.com.tw/cht/qrcode-datamatrix-generator/default.asp?qrLink
Rochford, K. (1985). Spatial learning disabilities and underachievement among university anatomy students. Medical Education, 19(1), 13-26. https://doi.org/10.1111/j.1365-2923.1985.tb01134.x
Rock, I. (1973). Orientation and form. New York: Academic Press.
Russell-Gebbett, J. (1985). Skills and strategies: Pupils' approaches to three-dimensional problems in biology. Journal of Biological Education, 19(4), 293-298. https://doi.org/10.1080/00219266.1985.9654755
Salthouse, T.A., Babcock, R. L., Skovroned, E., Mitchell, D.R.D., & Palmon, R. (1990). Age and experience effects in spatial visualization. Developmental Psychology, 26(1), 128-136. https://doi.org/10.1037/0012-1649.26.1.128
Sorby, S.A. (1999). Developing 3-D spatial visualization skills. Engineering Design Graphics Journal, 63(2), 21-32.
Vandenberg, S. & Kuse, A. (1978). Mental rotations: Group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599-604.
Wu, C. F. & Chiang, M. C. (2013). Effectiveness of applying 2D static depictions and 3D animations to orthographic views learning in graphical course. Computers & Education, 63, 28-42. https://doi.org/10.1016/j.compedu.2012.11.012