簡易檢索 / 詳目顯示

研究生: 金承勳
Seung-Hun Kim
論文名稱: 消除人類癌腫瘤幹細胞的藥物
Human cancer stem cell tumor alleviation by therapeutic agents
指導教授: 方剛
Fang, Kang
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 149
中文關鍵詞: 鴉膽子三環氧化物表皮生長因子受體肺癌中草藥外源性途徑肝癌幹細胞
英文關鍵詞: Brucea javanica, Teroxirone, epidermal growth factor receptor, human lung cancer, herbal medicine, extrinsic pathway, human liver cancer, stem cells
DOI URL: https://doi.org/10.6345/NTNU202203304
論文種類: 學術論文
相關次數: 點閱:235下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一部分: 利用鴉膽子水溶液萃取物清除突變上皮細胞生長因子接受體人類肺癌細胞
    中文摘要
    從古以來,傳統草藥已經被大部分的中國人作為常用藥物,也是東方國家廣泛接受的藥物。非小細胞肺癌是最常見的肺癌類型,早期很難被診斷出。突變的表皮生長因子受體已經成為新型抗癌治療的分子標靶。本論文所使用鴉膽子水溶液萃取物有效地減弱了在非小細胞肺癌具有突變EGFR L858R/T790M的生長。癌幹細胞具有抗藥性,轉移和癌症復發,並且可以影響腫瘤治療的發展。重要的是,抗藥性使腫瘤更惡化。本論文也探討了鴉膽子水溶液萃取物對非小細胞肺癌的癌幹細胞的療效與反應機制。鴉膽子水溶液提取物是具可以成為非小細胞肺癌放射性治療有潛力的藥物。

    第二部分: 發展teroxirone成為有效治療肝癌細胞的藥物
    中文摘要
    Teroxirone (1,3,5-tris((oxiran-2-yl)methyl)-1,3,5-triazinane-2,4,6-trione)是三環氧化物抗腫瘤劑,此研究目的是確定teroxirone如何調控與凋亡相關的細胞死亡。 利用MTT檢測三種肝細胞癌細胞系:Huh7(突變體p53),HepG2(野生型p53)和Hep3B(p53-缺失型) assay(細胞存活檢測) 細胞存活率,利用流式細胞儀及西方點墨法觀察凋亡所導致的細胞死亡。本研究發現在Huh7 細胞所引起凋亡的細胞死亡是透過外在途徑。Teroxirone 可以誘導從Huh7腫瘤球體所純化出來的腫瘤幹細胞的凋亡並抑制Huh7腫瘤球體幹細胞特性。

    Part-I. The alleviated tumorigenicity of human lung cancer cells carrying mutated epidermal growth factor receptor by aqueous extract of Brucea javanica
    Abstract
    The traditional herbal medicine has been used as convenient medicine by the majority of the Chinese population the since recorded history and is still a widely accepted medicine in oriental countries. NSCLC (non-small cell lung cancer) is the most prevalent type of lung cancers which is hard to be diagnosed early. The mutated EGFR (epidermal growth factor receptor) has become a target in the development of novel anti-cancer therapeutic approaches. In this study, the aqueous BJ (Brucea javanica) extract has found effectively attenuated the growth of human NSCLC with mutant EGFR L858R/T790M. CSCs (cancer stem cells) are involved in drug resistance, metastasis and relapse of cancers and can influence the tumor therapy development. Importantly, drug resistance makes tumors more malignant. The work investigated the underlying mechanisms of aqueous BJ extract against CSCs of NSCLC. The study showed potential implication of aqueous BJ extract as new target therapy to human lung cancer.

    Part-II. The development of teroxirone as an effective therapeutic agent against human hepatocellular carcinoma cells
    Abstract
    Teroxirone is an experimental triepoxide antitumor agent. The purpose of this study is to determine how teroxirone regulates growth of liver cancer cell. Three hepatocellular carcinoma cell lines, Huh7 (mutant p53), HepG2 (wild-type p53) and Hep3B (p53-null) cells, were used for experiments. The study included MTT assay for assessing cell viability, flow cytometry for evaluating apoptotic cell death and Western blot analysis for determining signal pathway activation. The findings suggested that teroxirone induced apoptotic cell death in p53-mutated Huh7 by stimulating extrinsic pathway that was reverted by caspase-3 inhibitor. Teroxirone also induced apoptosis and suppresses the stemness properties of the enriched Huh7 spheroids. The study implied that the small molecular weight molecule teroxirone is a potentially valuable agent to treat human hepatocellular carcinoma.

    ACKNOWLEDGEMENTS 2 LIST OF ABBREVIATIONS 3 Abstract 10 中文摘要 11 1. Introduction 12 1.1 The benefits of CHM 12 1.2 BJ as a conventional medicine 13 1.3 The prevalent lung cancer 14 1.4 EGFR in lung cancer 14 1.5 The CSCs hypothesis and drug resistance 16 1.6 Cancer stem cell markers in common cancers 17 2. Materials and methods 19 2.1 Cell culture conditions 19 2.2 The spheroid culture 19 2.3 Chemicals and reagents 20 2.4 Liquid chromatography/mass spectrometry analysis and instrumental conditions 20 2.5 Protein extraction and western blot analyses 21 2.6 Soft-agar colony formation assay 22 2.7 Immunofluorescence Staining 22 2.8 BrdU incorporation of spheroids 22 2.9 Tumor xenograft study 23 2.10 TUNEL assay 24 2.11 PCNA antibody staining for marker of proliferating cells in vivo 25 2.12 Statistical analysis 25 3. Results 26 3.1 LC/MS analysis of composition in aqueous BJ extract 26 3.2 The aqueous BJ extract induces apoptosis and reduced EGFR in H1975 cells 26 3.3 Effects of BJ on apoptotic features in H1975 cells 27 3.4 EGFR shRNA suppresses BJ sensitivities by inhibiting apoptosis 28 3.5 Oral administration of aqueous BJ extract inhibits xenograft tumor growth 28 3.6 Histological and fluorescence examination of the suppressed tumors 28 3.7 The aqueous BJ extract affects forming ability and proliferation in H1975 CSCs 29 3.8 The fluorescence cancer stem cell markers examination of the affected H1975 spheroids by aqueous BJ extract 30 3.9 The aqueous BJ extract induces apoptotic characteristics in H1975 spheroids 31 3.10 The aqueous BJ extract affects xenograft tumor growth in animal models nude mice 31 3.11 Fluorescence examination of the affected H1975 spheroid tumor by aqueous BJ extract 32 3.12 EGFR and cancer stem cell markers fluorescence examination of the affected H1975 spheroid tumor by aqueous BJ extract 33 3.13 The relapse of distinct stem cell signatures and drug resistance marker in spheroid tumors 33 3.14 The attenuated EMT and c-Met in tumors of mice fed with BJ 34 3.15 Histological examination of the collected organs 34 4. Discussion 35 Part-II. The development of teroxirone as an effective therapeutic agent against human hepatocellular carcinoma cells 40 Abstract 40 中文摘要 41 1. Introduction 42 1.1 Overview of liver cancer 42 1.2 An anticancer compounds teroxirone 43 2. Materials and methods 44 2.1 Cell culture conditions and treatments 44 2.2 The spheroid culture of HCC cells 44 2.3 MTT assay 45 2.4 Flow cytometry 45 2.5 Determination of apoptosis by double staining with Annexin V-FITC and PI 46 2.6 Protein extraction and western blot analyses 46 2.7 The effect of caspase-3 by z-DEVD-FMK 47 2.8 Spheroid formation assay 47 2.9 Soft agar colony formation assay 47 2.10 Immunofluorescence staining assay for spheres 48 2.11 Statistical analysis 48 3. Results 49 3.1 Dose-response growth curves of teroxirone in human hepatocellular carcinoma cells 49 3.2 Teroxirone increases apoptotic population of Huh7 cells by dose-dependent appearance of sub-G1 cells 49 3.3 Effects of teroxirone on apoptotic features in Huh7 cells 50 3.4 Inhibition of caspase-3 activity reduces apoptosis in HCC cells after treatment teroxirone 50 3.5 Teroxirone suppresses the growth of Huh7 spheroids 51 3.6 Teroxirone reduces stemness markers of Huh7 spheroids 51 3.7 Teroxirone induces apoptotic characteristics in Huh7 spheroids 52 4. Discussion 53 5. Conclusion 54 Figures 55 Figure 1. Chromatographic fingerprint analysis of the aqueous BJ extract 55 Figure 2. The aqueous BJ extract induces apoptosis and reduces EGFR in H1975 cells 59 Figure 3. Effects of teroxirone on apoptotic features in H1975 cells 61 Figure 4. EGFR shRNA suppresses BJ sensitivities by inhibiting apoptosis 63 Figure 5. Oral administration of aqueous BJ extract inhibited xenograft tumor growth 65 Figure 6. Histological and fluorescence examinations of the suppressed tumors 68 Figure 7. BJ reduces tumor growth by apoptosis 71 Figure 8. BJ suppresses H1975 spheroids growth 73 Figure 9. BJ reduces expression of stemness markers of H1975 spheres 76 Figure 10. BJ induces apoptotic characteristics of H1975 spheroids 79 Figure 11. Oral administration of BJ suppresses growth of tumor spheroid xenograft 82 Figure 12. BJ reduces spheroid tumor growth by apoptosis 85 Figure 13. Fluorescence examinations of the suppressed spheroid tumors 88 Figure 14. Fluorescence examination of the collected adherent cells and spheroid tumors 92 Figure 15. Fluorescence examination of the collected tumors 94 Figure 16. Histological examinations by H&E staining of the collected specimens 97 Figure 17. Dose-response growth of Huh7, HepG2 and Hep3B cells treated teroxirone 99 Figure 18. Teroxirone increases apoptotic population of Huh7 cells 102 Figure 19. Effects of teroxirone on apoptotic features in Huh7 cells 105 Figure 20. Teroxirone’s effects are reverted by z-DEVD-FMK in Huh7 cells 107 Figure 21. Caspase-3 inhibitor z-DEVD-FMK inhibits teroxirone-induced apoptosis in Huh7 cells 110 Figure 22. Model of FADD-mediated apoptosis induced by teroxirone in Huh7 111 Figure 23. Teroxirone suppresses the growth of HCC spheroids 114 Figure 24. Teroxirone reduces stemness and EMT markers of Huh7 spheres 117 Figure 25. Teroxirone induces apoptotic characteristics in Huh7 spheroids 120 References 122 Published paper 1 128 Published paper 2 139

    References
    1. Hsiao WL, Liu L: The role of traditional Chinese herbal medicines in cancer therapy--from TCM theory to mechanistic insights. Planta Med 2010, 76:1118-1131.
    2. Wang X, Wang N, Cheung F, Lao L, Li C, Feng Y: Chinese medicines for prevention and treatment of human hepatocellular carcinoma: current progress on pharmacological actions and mechanisms. J Integr Med 2015, 13:142-164.
    3. Chen JH, Kim SH, Fan PW, Liu CY, Hsieh CH, Fang K: The aqueous extract of Chinese medicinal herb Brucea javanica suppresses the growth of human liver cancer and the derived stem-like cells by apoptosis. Drug Des Devel Ther 2016, 10:2003-2013.
    4. Zhang XB, Li DN, Guo LP, Lu JW, Sun LY, Huang LQ: [Probe into monitoring mechanism of Chinese materia medica resources]. Zhongguo Zhong Yao Za Zhi 2013, 38:3223-3225.
    5. Zhang HP, Pan JB, Zhang C, Ji N, Wang H, Ji ZL: Network understanding of herb medicine via rapid identification of ingredient-target interactions. Sci Rep 2014, 4:3719.
    6. Efferth T, Li PC, Konkimalla VS, Kaina B: From traditional Chinese medicine to rational cancer therapy. Trends Mol Med 2007, 13:353-361.
    7. Lau ST, Lin ZX, Zhao M, Leung PS: Brucea javanica fruit induces cytotoxicity and apoptosis in pancreatic adenocarcinoma cell lines. Phytother Res 2008, 22:477-486.
    8. Nie YL, Liu KX, Mao XY, Li YL, Li J, Zhang MM: Effect of injection of brucea javanica oil emulsion plus chemoradiotherapy for lung cancer: a review of clinical evidence. J Evid Based Med 2012, 5:216-225.
    9. Cuendet M, Pezzuto JM: Antitumor activity of bruceantin: an old drug with new promise. J Nat Prod 2004, 67:269-272.
    10. Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA, Zhang DD: Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci U S A 2011, 108:1433-1438.
    11. Hall IH, Liou YF, Okano M, Lee KH: Antitumor agents XLVI: In vitro effects of esters of brusatol, bisbrusatol, and related compounds on nucleic acid and protein synthesis of P-388 lymphocytic leukemia cells. J Pharm Sci 1982, 71:345-348.
    12. Ku BM, Bae YH, Koh J, Sun JM, Lee SH, Ahn JS, Park K, Ahn MJ: AZD9291 overcomes T790M-mediated resistance through degradation of EGFR(L858R/T790M) in non-small cell lung cancer cells. Invest New Drugs 2016, 34:407-415.
    13. Engelman JA, Janne PA: Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res 2008, 14:2895-2899.
    14. Camidge DR, Pao W, Sequist LV: Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat Rev Clin Oncol 2014, 11:473-481.
    15. Remon J, Moran T, Majem M, Reguart N, Dalmau E, Marquez-Medina D, Lianes P: Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: a new era begins. Cancer Treat Rev 2014, 40:93-101.
    16. Sarosi V, Baliko Z: Efficacy of first-line afatinib versus chemotherapy in EGFR mutation positive pulmonary adenocarcinoma. Magy Onkol 2014, 58:325-329.
    17. D'Arcangelo M, Cappuzzo F: Erlotinib in the first-line treatment of non-small-cell lung cancer. Expert Rev Anticancer Ther 2013, 13:523-533.
    18. Gao G, Ren S, Li A, Xu J, Xu Q, Su C, Guo J, Deng Q, Zhou C: Epidermal growth factor receptor-tyrosine kinase inhibitor therapy is effective as first-line treatment of advanced non-small-cell lung cancer with mutated EGFR: A meta-analysis from six phase III randomized controlled trials. Int J Cancer 2012, 131:E822-829.
    19. Kogure Y, Saka H, Oki M, Saito TI, Ahmed SN, Kitagawa C, Imaizumi K: Post-progression survival after EGFR-TKI for advanced non-small cell lung cancer harboring EGFR mutations. PLoS One 2015, 10:e0135393.
    20. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007, 1:313-323.
    21. Craig CE, Quaglia A, Selden C, Lowdell M, Hodgson H, Dhillon AP: The histopathology of regeneration in massive hepatic necrosis. Semin Liver Dis 2004, 24:49-64.
    22. Malik B, Nie D: Cancer stem cells and resistance to chemo and radio therapy. Front Biosci (Elite Ed) 2012, 4:2142-2149.
    23. Wang JC: Evaluating therapeutic efficacy against cancer stem cells: new challenges posed by a new paradigm. Cell Stem Cell 2007, 1:497-501.
    24. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y, Wang TC: Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 2009, 27:1006-1020.
    25. Hiraga T, Ito S, Nakamura H: Cancer stem-like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility, and hyaluronan production. Cancer Res 2013, 73:4112-4122.
    26. Zhang J, Espinoza LA, Kinders RJ, Lawrence SM, Pfister TD, Zhou M, Veenstra TD, Thorgeirsson SS, Jessup JM: NANOG modulates stemness in human colorectal cancer. Oncogene 2013, 32:4397-4405.
    27. May R, Riehl TE, Hunt C, Sureban SM, Anant S, Houchen CW: Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice. Stem Cells 2008, 26:630-637.
    28. Schneider M, Huber J, Hadaschik B, Siegers GM, Fiebig HH, Schuler J: Characterization of colon cancer cells: a functional approach characterizing CD133 as a potential stem cell marker. BMC Cancer 2012, 12:96.
    29. Barr MP, MacDonagh L, Gray SG, O'Byrne K, Cuffe S, Finn S: 75P Inhibition and exploitation of aldehyde dehydrogenase 1 (ALDH1) as a cancer stem cell marker in cisplatin resistant NSCLC. J Thorac Oncol 2016, 11:S87.
    30. Benini S, Manara MC, Cerisano V, Perdichizzi S, Strammiello R, Serra M, Picci P, Scotlandi K: Contribution of MEK/MAPK and PI3-K signaling pathway to the malignant behavior of Ewing's sarcoma cells: therapeutic prospects. Int J Cancer 2004, 108:358-366.
    31. Pang L, Reddy PV, McAuliffe CI, Colvin G, Quesenberry PJ: Studies on BrdU labeling of hematopoietic cells: stem cells and cell lines. J Cell Physiol 2003, 197:251-260.
    32. Soucheray M, Capelletti M, Pulido I, Kuang Y, Paweletz CP, Becker JH, Kikuchi E, Xu C, Patel TB, Al-Shahrour F, et al: Intratumoral heterogeneity in EGFR-mutant NSCLC results in divergent resistance mechanisms in response to EGFR tyrosine kinase inhibition. Cancer Res 2015, 75:4372-4383.
    33. Sugano T, Seike M, Noro R, Soeno C, Chiba M, Zou F, Nakamichi S, Nishijima N, Matsumoto M, Miyanaga A, et al: Inhibition of ABCB1 overcomes cancer stem cell-like properties and acquired resistance to MET inhibitors in non-small cell lung cancer. Mol Cancer Ther 2015, 14:2433-2440.
    34. Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M, Bus CJ, Kadkhoda K, Wiechec E, Halayko AJ, Los M: Apoptosis and cancer: mutations within caspase genes. J Med Genet 2009, 46:497-510.
    35. Liu TT, Mu LQ, Dai W, Wang CB, Liu XY, Xiang DX: Preparation, characterization, and evaluation of antitumor effect of Brucea javanica oil cationic nanoemulsions. Int J Nanomedicine 2016, 11:2515-2529.
    36. Furfaro AL, Traverso N, Domenicotti C, Piras S, Moretta L, Marinari UM, Pronzato MA, Nitti M: The Nrf2/HO-1 axis in cancer cell growth and chemoresistance. Oxid Med Cell Longev 2016, 2016:1958174.
    37. Chen K, Huang YH, Chen JL: Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 2013, 34:732-740.
    38. Medema JP: Cancer stem cells: the challenges ahead. Nat Cell Biol 2013, 15:338-344.
    39. Valent P, Bonnet D, De Maria R, Lapidot T, Copland M, Melo JV, Chomienne C, Ishikawa F, Schuringa JJ, Stassi G, et al: Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer 2012, 12:767-775.
    40. Lohberger B, Rinner B, Stuendl N, Absenger M, Liegl-Atzwanger B, Walzer SM, Windhager R, Leithner A: Aldehyde dehydrogenase 1, a potential marker for cancer stem cells in human sarcoma. PLoS One 2012, 7:e43664.
    41. Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B, Miele L: Targeting Notch to target cancer stem cells. Clin Cancer Res 2010, 16:3141-3152.
    42. Zhang G, Wang Z, Luo W, Jiao H, Wu J, Jiang C: Expression of potential cancer stem cell marker ABCG2 is associated with malignant behaviors of hepatocellular carcinoma. Gastroenterol Res Pract 2013, 2013:782581.
    43. Selbo PK, Weyergang A, Eng MS, Bostad M, Maelandsmo GM, Hogset A, Berg K: Strongly amphiphilic photosensitizers are not substrates of the cancer stem cell marker ABCG2 and provides specific and efficient light-triggered drug delivery of an EGFR-targeted cytotoxic drug. J Control Release 2012, 159:197-203.
    44. Ding XW, Wu JH, Jiang CP: ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci 2010, 86:631-637.
    45. Vinogradov S, Wei X: Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond) 2012, 7:597-615.
    46. Corominas-Faja B, Oliveras-Ferraros C, Cuyas E, Segura-Carretero A, Joven J, Martin-Castillo B, Barrajon-Catalan E, Micol V, Bosch-Barrera J, Menendez JA: Stem cell-like ALDH(bright) cellular states in EGFR-mutant non-small cell lung cancer: a novel mechanism of acquired resistance to erlotinib targetable with the natural polyphenol silibinin. Cell Cycle 2013, 12:3390-3404.
    47. Xu MH, Gao X, Luo D, Zhou XD, Xiong W, Liu GX: EMT and acquisition of stem cell-like properties are involved in spontaneous formation of tumorigenic hybrids between lung cancer and bone marrow-derived mesenchymal stem cells. PLoS One 2014, 9:e87893.
    48. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133:704-715.
    49. Barr MP, Gray SG, Hoffmann AC, Hilger RA, Thomale J, O'Flaherty JD, Fennell DA, Richard D, O'Leary JJ, O'Byrne KJ: Generation and characterisation of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature. PLoS One 2013, 8:e54193.
    50. Zhang W, Lei P, Dong X, Xu C: The new concepts on overcoming drug resistance in lung cancer. Drug Des Devel Ther 2014, 8:735-744.
    51. Kim SH, Liu CY, Fan PW, Hsieh CH, Lin HY, Lee MC, Fang K: The aqueous extract of Brucea javanica suppresses cell growth and alleviates tumorigenesis of human lung cancer cells by targeting mutated epidermal growth factor receptor. Drug Des Devel Ther 2016, 10:3599-3609.
    52. Yoshida H, Yamamoto D, Kanematsu S, Tanaka K, Ah K: A case of multi-drug resistant breast cancer with liver metastasis treated effectively by S-1 monotherapy. Gan To Kagaku Ryoho 2010, 37:2901-2903.
    53. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 2011, 61:69-90.
    54. Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P: Toxic proteins released from mitochondria in cell death. Oncogene 2004, 23:2861-2874.
    55. Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Saavedra E, Moreno-Sanchez R: The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy. Mol Aspects Med 2010, 31:145-170.
    56. Wang JP, Lin KH, Liu CY, Yu YC, Wu PT, Chiu CC, Su CL, Chen KM, Fang K: Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53. Toxicol Appl Pharmacol 2013, 273:110-120.
    57. Schwartz M, Roayaie S, Konstadoulakis M: Strategies for the management of hepatocellular carcinoma. Nat Clin Pract Oncol 2007, 4:424-432.
    58. Ames MM, Kovach JS, Rubin J: Pharmacological characterization of teroxirone, a triepoxide antitumor agent, in rats, rabbits, and humans. Cancer Res 1984, 44:4151-4156.
    59. Cervello M, McCubrey JA, Cusimano A, Lampiasi N, Azzolina A, Montalto G: Targeted therapy for hepatocellular carcinoma: novel agents on the horizon. Oncotarget 2012, 3:236-260.
    60. Nguyen KC, Seligy VL, Tayabali AF: Cadmium telluride quantum dot nanoparticle cytotoxicity and effects on model immune responses to Pseudomonas aeruginosa. Nanotoxicology 2013, 7:202-211.
    61. Hung JY, Hsu YL, Ko YC, Tsai YM, Yang CJ, Huang MS, Kuo PL: Didymin, a dietary flavonoid glycoside from citrus fruits, induces Fas-mediated apoptotic pathway in human non-small-cell lung cancer cells in vitro and in vivo. Lung Cancer 2010, 68:366-374.
    62. Prasad S, Yadav VR, Kannappan R, Aggarwal BB: Ursolic acid, a pentacyclin triterpene, potentiates TRAIL-induced apoptosis through p53-independent up-regulation of death receptors: evidence for the role of reactive oxygen species and JNK. J Biol Chem 2011, 286:5546-5557.
    63. Jin Z, El-Deiry WS: Overview of cell death signaling pathways. Cancer Biol Ther 2005, 4:139-163.
    64. Ashkenazi A, Yuan J, Wells JA: Regulated cell death part A: apoptotic mechanisms. Preface. Methods Enzymol 2014, 544:xv.
    65. Hussain SP, Schwank J, Staib F, Wang XW, Harris CC: TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 2007, 26:2166-2176.
    66. Hollstein M, Sidransky D, Vogelstein B, Harris CC: p53 mutations in human cancers. Science 1991, 253:49-53.
    67. Sherr CJ, McCormick F: The RB and p53 pathways in cancer. Cancer Cell 2002, 2:103-112.
    68. Ji J, Wang XW: Clinical implications of cancer stem cell biology in hepatocellular carcinoma. Semin Oncol 2012, 39:461-472.
    69. You H, Ding W, Rountree CB: Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta. Hepatology 2010, 51:1635-1644.

    下載圖示
    QR CODE