簡易檢索 / 詳目顯示

研究生: 林佳宏
論文名稱: 重建翠灰蝶族的系統發育及食性演化
Reconstruction of phylogeny within the tribe Theclini (Lepidoptera, Lycaenidae, Theclinae) and the evolution of host plant use
指導教授: 徐堉峰
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 73
中文關鍵詞: 翠灰蝶親緣關係COICOIIEf-1α食性演化
英文關鍵詞: Theclini, phylogeny, COI, COII, Ef-1α, evolution of host plant use
論文種類: 學術論文
相關次數: 點閱:253下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 灰蝶科中的翠灰蝶族(tribe Theclini)蝴蝶目前在世界上已知186種,主要分布在東亞。目前翠灰蝶的屬級分類群目前仍缺乏明確的定義,以致不同研究者間迄今仍常使用不同的屬概念,造成翠灰蝶的高階分類上的不穩定。因此本研究重建翠灰蝶的親緣關係樹並進一步探討其食性演化。
    本研究蒐集到內群29屬60種,外群6屬9種,共計107個樣本,另外下載National Center for Biotechnology Information((NCBI)的序列資料共6屬10種。根據
    粒線體DNA的COI及COII基因以及核DNA的Ef-1α基因,利用最大減約法、最大概似法以及貝氏推論分析去進行親緣關係樹的建構。
    結果顯示,翠灰蝶族為一個單系群,且多數結果支持翠灰蝶族可以再分成三個單系群;檢驗各屬是否為單系群,發現本研究33屬中有Chrysozephyrus、Shirozuozephyrus、Teratozephyrus、Euaspa及Ussuriana等5個屬並非單系群,根據親緣關係樹的結果將Shirozuozephyrus屬合併入Chrysozephyrus屬,將Fujiokaozephyrus屬及Uedaozephyrus屬併入Teratozephyrus屬。針對許多新屬的成立及過多單屬單種的問題,結果發現大多數這類的屬可能均有其存在的必要性。在種的階層上,根據物種間相當低的遺傳距離以及翅膀紋路、交尾器的相似性,推論Cordelia comes與Cordelia wilemaniella以及Chrysozephyrus hisamatsusanus與Chrysozephyrus splendidulus分別為同一種。在食性演化的探討方面,推測翠灰蝶的祖先利用的植物應該是殼斗科,而其他植物的利用情形應該都是由利用殼斗科植物去演變過來的。

    There are 186 species of the tribe Theclini (Lycaenidae, Theclinae) worldwide, with most of them distributed in eastern Asia. At present, the genera within the tribe are so far poorly defined, and different authors usually apply different generic concepts, which causes considerable controversies over the higher taxonomy of tribe Theclini. Therefore, the study intends to present a phylogeny and the evolution of host plant use.
    In this study, 107 samples were collected, including 60 species in 29 genera for the ingroup and 9 species in 6 genera for the outgroup. And I downloaded sequences of 10 species in 6 genera from National Center for Biotechnology Information ((NCBI). Characters from the mitochondrial genes for cytochrome oxidases I (COI) and II (COII) and from the nuclear gene for elongation factor 1α (Ef-1α) were used to reconstruct the phylogeny of the tribe Theclini using maximum parsimony, maximum likelihood and Bayesian phylogenetic methods.
    The result indicated that the tribe Theclini is monophyletic composed of three monophyletic groups. Besides, 5 genera, Chrysozephyrus, Shirozuozephyrus, Teratozephyrus, Euaspa and Ussuriana, in 33 genera are not monophyletic groups. Based on the phylogenetic tree, I put the genus Shirozuozephyrus under the genus Chrysozephyrus and the genus Fujiokaozephyrus and genus Uedaozephyrus under the genus Teratozephyrus. Besides, the results suggested that the establishment of many new genera and monotypic genera seem to be necessary. At the species-level, based on the low genetic distance and the similarity of the wing patterns and the genitalia, I considered Cordelia comes and Cordelia wilemaniella and Chrysozephyrus hisamatsusanus and Chrysozephyrus splendidulus are the same species respectively. As for the evolution of host plant use, on the basis of the present results, it was possible to propose that the ancestral state of the tribe Theclini is the use of the family Fagaceae as host plants, and the use of other host plants derived from this family.

    目錄……………………………………………………………I 附表目次………………………………………………………II 附圖目次………………………………………………………III 中文摘要………………………………………………………1 英文摘要………………………………………………………2 前言……………………………………………………………4 材料與方法……………………………………………………8 結果……………………………………………………………12 討論……………………………………………………………19 結論……………………………………………………………31 參考文獻………………………………………………………33 附表……………………………………………………………38 附圖……………………………………………………………54

    Angiosperm Phylogeny Group (APG), 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot.J. Linn. Soc. 141: 399-436.
    Chapman, R. F., 1982. Chemoreception: the significance of receptor numbers. Adv. Insect Physiol. 16:247-356.
    D’Abrera B., 1986. Butterflies of the Oriental region, Part III. Hill House.
    D’Abrera B., 1993. Butterflies of the Holarctic region, Part III. Hill House.
    Drummond AJ, Rambaut A, Shapiro B, Pybus O, 2005. Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution 22:1185-1192.
    Drummond, A. J. and Rambaut, A., 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7:214.
    Eliot JN, 1973. The higher classification of the Lycaenidae (Lepidoptera): a tentative arrangement. Bull. Br. Mus. Nat. Hist. (Ent.) 28: 373-505.
    Faith, D.P., Cranston, P.S., 1991. Could a cladogram this short have arisen by chance alone—on permutation tests for cladistic structure. Cladistics 7: 1–28.
    Farrell, B. D., 2001. Evolutionary assembly of the milkweed fauna: Cytochrome oxidase I and the age of Tetraopes beetles. Mol. Phylogenet. Evol. 18:467–478.
    Fujioka, T., 2003. On the new genus from continental China, Hayashikeia gen. n. (Rhopalocera, Lycaenidae). Gekkan-Mushi 392:8-15.
    Hebert, P. D. N., E. H. Penton, J. M. Burns, D. H. Janzen, and W. Hallwachs, 2004a. Ten species in one:DNAbarcoding reveals cryptic species in the neotropical skipper butterfly Astrapes fulgerator. Proc. Natl. Acad. Sci. USA 101: 14812–14817.
    Megens, H.-J., Van Nes, W. J., Van Moorsel, C. H. M., Pierce, N. E. and de Jong, R., 2004. Molecular phylogeny of the Oriental butterfly genus Arhopala (Lycaenidae, Theclinae) inferred from mitochondrial and nuclear genes. Systematic Entomology 29: 115–131.
    Hewitson, W., 1862-1878. Illustrations of Diurnal Lepidoptera. London.
    Howarth TG, 1957. A revision of the genus Neozephyrus Sibatani and Ito (Lepidoptera: Lycaenidae). Bull. Br. Mus. Nat. Hist. (Ent.) 5: 233-285.
    Hsu, Y.F., Ding D., Yen, S. H. and Qian, Z. Q., 2004. Systematic Problems Surrounding Howarthia Melli (Forster) (Lepidoptera: Lycaenidae: Theclinae), with Description of a New Species and a Review of Rhododendron-Association in Lycaenid Butterflies. Ann. Entomol. Soc. Am. 97(4): 653-666.
    Hsu, Y.F., 2009. A new species of Antigius (Lepidoptera: Lycaenidae: Theclini) from Taiwan. Zootaxa 1983: 45-53.
    Hsu, Y.F. and Chou WI, 2001. Araragi panda sp. n., an intermediate taxon in the phylogeny of Theclini (Lepidoptera: Lycaenidae: Theclinae). Insect Systematics & Evolution 32: 155-168.
    Hsu, Y.F. and Lin MY, 1994. Systematic position of Sibataniozephyrus and description of a new species from Taiwan (Lycaenidae: Theclinae). J. Lep. Soc. 48: 128-147.
    Huelsenbeck JP, Ronquist F, 2001. Mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
    Inomata, T., Ikeda, M., Kishida, Y. and Kaneda, Y., 1986. Atlas of the Japanese Butterflies. Tokyo.
    Koiwaya S, 2007. The Zephyrus hairstreaks of the World. Mushi-Sha, Tokyo. (in Japanese)
    Matsumura, S., 1929. New butterflies from Japan, Korea and Formosa. Insecta matsumurana 3 (2/3): 87-107.
    Maddison, W.P., Maddison, D.R., 2006. Mesquite: a modular system for evolutionary analysis. Ed 1.1.
    McClure, M. S.,1980.Competition between exotic species: scale insects on hemlock.Ecology 61:1391-1401.
    Megens H.-J, van Nes W.J, van Moorsel C.H.M, Pierce N.E, de Jong R, 2004. Molecular phylogeny of the oriental butterfly genus Arhopala (Lycaenidae Theclinae) inferred from mitochondrial and nuclear genes. Syst. Entomol. 29:115–131.
    M.S. Caterino and F.A.H. Sperling, 1999. Papilio Phylogeny Based on Mitochondrial Cytochrome Oxidase I and II Genes. Molecular Phylogenetics and Evolution 1: 122–137
    Mitter, C. and Farrell, B, 1991. Macroevolutionary aspects of insect-plant interactions. In Bernays, E. A. (ed.) Insect Plant Interactions Vol III. CRC Press,Boca Raton, pp.35-78.
    Nazari V, Zakharov EV, Sperling FAH, 2007. Phylogeny, historical biogeography, and taxonomic ranking of Parnassiinae (Lepidoptera, Papilionidae) based on
    morphology and seven genes. Molecular Phylogenetics and Evolution 42: 131–156.
    Nikolai P. Kandul et al.,2004. Phylogeny of Agrodiaetus Hübner 1822 (Lepidoptera : Lycaenidae) Inferred from mtDNA Sequences of COI and COII and Nuclear Sequences of EF1-α: Karyotype Diversification and Species Radiation , Syst. Biol.53(2):278–298.
    Paul D. N. Hebert, Alina Cywinska, Shelley L. Ball and Jeremy R. deWaard, 2003.Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 2003 270,313-321
    Posada D, Carndall KA, 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817-818.
    Quek, S. P., Davies, S. J., Itino, T. and Pierce, N. E. Codiversification in an antplant mutualism: the phylogeny of host use in Crematogaster (Formicidae)associates of Macaranga (Euphorbiaceae). Evolution 58: 554-570 (2004).
    Shirôzu T, 1961. Evolution of the food-habits of larvae of the thecline butterflies. Tyô to Ga 12: 144-162.
    Shirôzu T and Yamamoto H, 1956. A generic revision and the phylogeny of the tribe Theclini (Lepidoptera; Lycaenidae). Sieboldia 1: 329-421.
    Sibatani, T. and Ito, S., 1942. Beitrag zur Systematik der Theclinae im Kaiserreich Japan unter besonderer Berücksichtigung der sogenannten Gattung Zephyrus (Lepidoptera, Lycaenidae). Tenthredo 3(4): 299-334.
    Sonan, 1929. Descriptions of two aberrant forms and a new species of the butterflies from Formosa., Zephyrus 1(4): 135-137.
    Strong, D. R, Lawton, J. H and Southwood, R., 1984. Insects on plants. Harvard University Press, Cambridge.
    Sugiyama, 1994. New butterflies from Western China (III). Pallarge (4): 1-8.
    Tamura K, Dudley J, Nei M & Kumar S, 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution 24: 1596-1599.
    Teshirogi M, 1997. An illustrated book of the Japanese Lycaenidae. Tokai University Press.
    Tytler, H., 1915. Notes on some new and interesting butterflies from Manipur and the Naga Hills, Part III. J. Bombay nat. Hist. Soc. 23: 216-229
    Wahlberg, N., 2001. The phylogenetics and biochemistry of host-plant specialization in Melitaeine butterflies (Lepidoptera: Nymphalidae). Evolution 55:522–537.
    Wahlberg N, Braby MF, Brower AVZ, de Jong R, Lee MM, Nylin S, Pierce NE,Sperling FAH, Vila R, Warren AD and Zakharov E, 2005. Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc. R. Soc. B. 272: 1577–1586.
    Wahlberg N, Wheat CW, 2008. Genomic outposts serves the phylogenomic pioneers: Designing Novel Nuclear Markers for Genomic DNA Extractions of Lepidoptera. Systematic Biology 57: 231-242
    Wang M. and Owada M., 2009. Description of a new species of the genus Ussuriana Tutt (Lepidoptera, Lycaenidae) from China. Trans. lepid. Soc. Japan 60(2): 125-127.
    Xia, X., and Xie. Z., 2001. DAMBE:Data analysis in molecular biology and evolution. Journal of Heredity 92:371-373
    Uchida H. 1999. The life histories of the Taiwanese Theclini. Self-published. (in Japanese)
    小岩屋敏。1993。中國蝶類研究第二卷。Self-published。
    白水隆。1960。原色台灣蝶類大圖鑑。保育社。
    白水隆。2006。日本產蝶類標準圖鑑。
    徐堉峰。1999。台灣蝶圖鑑第一卷。台灣省立鳳凰谷鳥園。
    徐堉峰。2002。台灣蝶圖鑑第二卷。台灣省立鳳凰谷鳥園。

    下載圖示
    QR CODE