簡易檢索 / 詳目顯示

研究生: 黃品森
Huang, Pin-Sen Richard
論文名稱: 次序試驗設計於單機排程問題之應用
An Application of Order-of-Addition Designs in Single-Machine Scheduling
指導教授: 蔡碧紋
Tsai, Pi-Wen
口試委員: 蔡碧紋
Tsai, Pi-Wen
呂翠珊
Lu, Tsui-Shan
蔡欣甫
Tsai, Shin-Fu
口試日期: 2024/06/26
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 48
中文關鍵詞: 次序試驗成對順序作業排程
英文關鍵詞: order of addition, pair-wise ordering, machine scheduling
研究方法: 數據模擬
DOI URL: http://doi.org/10.6345/NTNU202400756
論文種類: 學術論文
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 次序試驗(OofA)研究物件添加的順序對於實驗結果的影響。在研究此類型實驗時,一個常用的分析方法是利用成對順序模型(PWO)。而在設計的選擇上,儘管包含所有可能排序的全次序設計是最佳的,實務上我們經常無法對每一種排序進行實驗。在本論文中,我們提出一個基於William設計且滿足多個平衡性質的部分次序設計,並展示其於單機排程問題中找出最佳排序的應用。此外,我們介紹一種基於成對順序模型的分數演算法,用於決定次序問題中的最佳執行排序。模擬的結果顯示該演算法能在短時間內提供一個相當接近最佳解的排序。

    Order-of-addition (OofA) experiments are to study the addition order of components and the response. A popular way to analyze such experiments is by using pair-wise ordering (PWO) models. The full design that includes all possible orderings is optimal but impractical due to its large run size. In this paper, we propose a fractional OofA design based on William’s design that satisfies several balance criteria and present its application in single-machine scheduling where the goal is to find the best ordering of tasks. Additionally, we introduce the score method based on the PWO model that determines an ordering of the tasks. Simulation results suggest that the method is capable of providing an ordering with its cost value close to the optimal value.

    Section 1 Introduction 1 Section 2 Optimal order-of-addition designs 4 2.1 Properties of PWO models 4 2.2 The m(m−1)-run OofA design 8 2.2.1 Constructing the design 8 2.2.2 Balance properties 10 2.2.3 D-efficiencies 13 Section 3 Optimal machine scheduling 16 3.1 Single machine scheduling 16 3.2 Comparison of different OofA designs 19 3.3 Score method 20 Section 4 Simulations for the score method 26 4.1 Simulation settings 26 4.2 Criteria to compare different approaches 27 4.3 Simulation results 27 4.4 Comparison between different settings 36 Section 5 Discussion and conclusion 37 Reference 38 Appendix. Proof of theorems 40

    Van Nostrand, R. C. (1995). Design of experiments where the order of addition is important. In ASA Proceeding Section of Physical and Engineering Sciences, 155–160. American Statistical Association, Alexandria.
    Graham, R. L., Lawler, E. L., & Lenstra, J. K., Rinnooy Kan, A. H. G. (1979). Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5, 287–326.
    Zhao, Y. N., Lin, D. K. J., & Liu, M. Q.(2021). Designs for order-of-addition experiments. Journal of Applied Statistics, 48, 1475–1495.
    Voelkel, J. G. (2019). The design of order-of-addition experiments. Journal of Quality Technology, 51, 230–241.
    Peng, J., Mukerjee, R., & Lin, D. K. J. (2019). Design of order-of-addition experiments. Biometrika, 106, 683–694.
    Williams, E. J. (1949). Experimental Designs Balanced for the Estimation of Residual Effects of Treatments. Australian Journal of Scientific Research, Series A, Physical Science, 2, 149–168.
    Williams, E. J. (1950). Experimental designs balanced for pairs of residual effects. Australian Journal of Scientific Research, Series A, Physical Sciences, 3, 351–363.
    Sheehe P. R., & Bross I. D. J. (1961). Latin Squares to Balance Immediate Residual and Other Effects. Biometrics, 17(3), 405–414.
    Smith, W. E. (1956). Various optimizers for single-stage production. Naval Research Logistics Quarterly, 3(1–2), 59–66.
    H¨ ohn, W., & Jacobs, T. (2012). Single Machine Scheduling with Weighted Nonlinear Cost. In Proceedings of the 14th Workshop on Algorithm Engineering and Experiments, 103–117. Society for Industrial and Applied Mathematics Publications, Philadelphia.
    Yang, J. F., Sun, F., & Xu, H. (2021). A Component-Position Model, Analysis and Design for Order-of-Addition Experiments. Technometrics, 63(2), 212–224.
    Lenth, R. V. (1989). Quick and Easy Analysis of Unreplicated Factorials. Technometrics, 31, 469–473.
    Stokes, Z., & Xu, H. (2022). A position-based approach for design and analysis of order-of-addition experiments. Statistica Sinica, 32, 1467–1488.
    Chen, J., Mukerjee, R., & Lin, D. K. J. (2020) Construction of optimal fractional Order-of-Addition designs via block designs. Statistics & Probability Letters, 161, 108728.

    無法下載圖示 電子全文延後公開
    2025/06/26
    QR CODE