簡易檢索 / 詳目顯示

研究生: 盧冠霖
Lu, Kuan-Lin
論文名稱: 增強鉛離子吸附於EDTA-矽烷修飾氧化石墨烯之感應耦合電漿原子發射光譜儀檢測研究
Enhanced adsorption of Pb(II) ions by EDTA-silane modified graphene oxide composites using ICP-AES technology
指導教授: 邱南福
Chiu, Nan-Fu
江淑媜
Chiang, Shu-Jen
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 82
中文關鍵詞: 氧化石墨烯矽烷鍵結法乙二胺四乙酸-矽烷吸附鉛離子
英文關鍵詞: graphene oxide, silane modified, EDTA-Silane, adsorption, lead ion
DOI URL: https://doi.org/10.6345/NTNU202204662
論文種類: 學術論文
相關次數: 點閱:110下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化石墨烯(Graphene Oxide, GO)由於它擁有大比表面積與豐富含氧官能基,因此具備了高效率、高吸附量的優秀吸附劑條件,是目前研究中,重金屬鉛離子吸附量最大的奈米材料。本研究利用矽烷化學法將GO表面的羥基(-OH)與材料乙二胺四乙酸-矽烷(EDTA-Silane)中的矽形成共價鍵結,將合成材料命名為GO-EDTA,利用修飾後表面豐富的羧基群,增加吸附點位,進一步提升吸附量與吸附效率。
    本研究設計四種實驗方式探討GO與GO-EDTA對於鉛離子之吸附能力,實驗一:等溫吸附平衡實驗,探討初始濃度對於吸附量的影響 ; 實驗二:吸附動力學實驗,探討時間對於吸附量的影響 ; 實驗三:不同pH值之吸附平衡實驗,探討在不同pH值下對於吸附量的影響 ; 實驗四:不同溫度下之吸附平衡實驗,探討不同溫度下對於吸附量的影響,四種實驗吸附前後的鉛離子濃度皆透過感應耦合電漿原子放射光譜儀(Inductively Coupled Plasma with Atomic Emission Spectroscopy, ICP-AES)進行測量。
    合成材料的表面特性分析,採用傅立葉轉換紅外線光譜儀(Fourier-Transform Infrared Spectrometer, FTIR)與掃描式顯微鏡(Scanning Electron Microscope, SEM)進行驗證。並將吸附實驗數據以不同吸附模式進行分析,使用的模式有:Langmuir等溫吸附模式、Freundlich等溫吸附模式、偽一階吸附動力學模式、偽二階吸附動力學模式、Van’t Hoff吸附熱力學模式。
    本研究成功運用矽烷鍵結法合成出GO-EDTA材料,於25°C下,GO與GO-EDTA之最大吸附量分別為251.05 mg/g、416.78 mg/g,提升約1.66倍,GO與GO-EDTA吸附達飽和時間由40分鐘降至約30分鐘,吸附時間縮短,初始吸附速率從42.88 mg/g.min提升至72.46 mg/g.min,另外,在25°C、45°C、65°C下,GO-EDTA之最大吸附量分別為416.78 mg/g、603.90 mg/g、713.07 mg/g,從25°C至65°C吸附量共提升1.71倍,總體而言,吸附點位的增加同時提升了吸附量與吸附效率,經判斷其吸附機制主要為化學吸附之離子交換吸附,而GO-EDTA吸附Pb2+過程為自發性的吸熱反應。期盼此GO-EDTA材料未來能應用於水質淨化、污水處理或生醫光電等多種領域。

    Graphene Oxide (GO) is an excellent adsorbent with high efficiency and high adsorption capacity, due to it’s large specific surface area and abundant oxygen-containing functional groups. Until to current study, GO is the largest adsorption capacity adsorbent of nano-material. In this study, using the hydroxyl group on graphene oxide surfaces through a silanization reaction between N-(trimethoxysilylpropyl) ethylenediamine triacetic acid to form a covalent bonding. The synthetic material named GO-EDTA. After modified, the abundant carboxyl groups on GO-EDTA which increase the adsorption sites. Further more to increase the adsorption capacity and adsorption efficiency.
    In this study, the adsorption ability of GO and GO-EDTA for lead ion was designed by four experimental methods. Experiment I : Isotherm equilibrium adsorption experiment, to study the effect of initial concentration on adsorption capacity. Experiment II : Equilibrium adsorption kinetics experiment, to study the effect of time on adsorption capacity. Experiment III : Differential pH value equilibrium adsorption experiment, to study the effect of different pH values on adsorption capacity. Experiment IV : Differential temperature equilibrium adsorption experiment, to study the effect of different temperature on adsorption capacity. The concentration of lead ions before and after the experiment was measured by Inductively Coupled Plasma with Atomic Emission Spectroscopy (ICP-AES).
    The Fourier transform infrared spectroscopy (FTIR) and Scanning Electron Microscope (SEM) were used to verify the surface properties of the composites. The experimental data were analyzed by different adsorption models, including Langmuir isotherm model, Freundlich isotherm model, Pseudo-first order model, Pseudo-second order model, Van't Hoff thermodynamics model.
    In this study, successfully using silanization to synthesis GO-EDTA. At 25 ° C, the maximum adsorption capacity of GO and GO-EDTA was 251.05 mg/g and 416.78 mg/g, which is 1.66 times higher than GO. The adsorption time of GO and GO-EDTA decreased from 40 min to 30 min. The initial adsorption rate was increased from 42.88 mg/g min to 72.46 mg/g min. Moreover, at 25 °C、45 °C and 65 °C, the maximum adsorption capacity of GO-EDTA were 416.78 mg/g、603.90 mg/g and 713.07 mg/g, which increase 1.71 times from 25 ℃ to 65 ℃. The mechanism of adsorption is ion exchange adsorption and GO-EDTA is spontaneous endothermic reaction process to adsorb Lead ions. It’s expected that GO-EDTA will be used in various application such as water purification, sewage treatment or Biophotonics.

    致謝.................................................................. i 摘要................................................................. ii Abstract............................................................. iv 目錄................................................................. vi 圖目錄................................................................ x 表目錄.............................................................. xii 第一章 緒論........................................................... 1 1.1 研究動機與目的.................................................. 1 1.2 論文架構....................................................... 4 第二章 文獻回顧及實驗原理............................................... 5 2.1 重金屬簡介..................................................... 5 2.1.1 重金屬之定義.............................................. 5 2.1.2 全球水污染概況............................................. 5 2.1.3 重金屬廢水處理............................................. 7 2.1.4 鉛的危害.................................................. 9 2.2 石墨烯簡介.................................................... 10 2.3 氧化石墨烯.................................................... 12 2.4 乙二胺四乙酸(EDTA)............................................ 14 2.5 感應耦合電漿原子發射光譜儀(ICP-AES)原理......................... 15 2.5.1 原子發射原理............................................. 15 2.5.2 ICP-AES量測原理.......................................... 17 2.6 吸附理論...................................................... 19 2.6.1 物理吸附................................................. 19 2.6.2 化學吸附................................................. 20 2.6.3 特定吸附與非特定吸附....................................... 22 2.7 等溫吸附曲線................................................... 22 2.7.1 等溫吸附線分類............................................ 22 2.7.2 固態與液態(固液)界面等溫吸附模式............................ 25 2.7.3 Langmuir等溫吸附模式...................................... 26 2.7.4 Freundlich等溫吸附模式.................................... 29 2.8 吸附動力學模式................................................. 30 2.8.1 偽一階吸附動力學模式 ( Pseudo-first order model ).......... 31 2.8.2 偽二階吸附動力學模式 ( Pseudo-second order model )......... 33 2.9 吸附熱力學..................................................... 34 第三章 實驗方法....................................................... 37 3.1 實驗材料....................................................... 37 3.2 儀器設備....................................................... 39 3.3 溶液配置....................................................... 40 3.4 實驗流程規劃................................................... 41 3.5 GO-EDTA材料合成實驗............................................ 42 3.5.1 合成方法示意圖............................................. 42 3.5.2 合成步驟及條件............................................. 43 3.6 材料合成驗證.................................................... 44 3.6.1 傅立葉轉換紅外線光譜儀(FTIR)驗證............................ 44 3.6.2 掃描式顯微鏡(SEM)驗證...................................... 46 3.7 實驗一 等溫吸附平衡實驗.......................................... 47 3.8 實驗二 吸附動力學實驗............................................ 48 3.9 實驗三 不同pH值之吸附平衡實驗..................................... 49 3.10 實驗四 不同溫度下之吸附平衡實驗.................................. 50 3.11 感應耦合電漿原子發射光譜儀(ICP-AES)操作.......................... 51 3.11.1 ICP-AES系統介紹........................................... 51 3.11.2 ICP-AES儀器操作流程....................................... 52 第四章 實驗結果與討論................................................... 54 4.1 GO-EDTA合成方法與討論............................................ 54 4.1.1 傅立葉轉換紅外線光譜儀(FTIR)分析............................. 55 4.1.2 掃描式電子顯微鏡(SEM)影像圖................................. 56 4.2 GO/GO-EDTA吸附實驗.............................................. 58 4.2.1 實驗一 等溫吸附平衡實驗...................................... 59 4.2.2 實驗二 吸附動力學實驗....................................... 62 4.2.3 實驗三 pH值對於吸附量影響實驗................................ 65 4.2.4 實驗四 不同溫度下之吸附平衡實驗............................... 67 4.2.5 GO-EDTA吸附熱力學分析....................................... 71 4.2.6 GO/GO-EDTA吸附影像探討...................................... 73 第五章 結論與未來展望.................................................... 74 5.1 實驗總結........................................................ 74 5.2 未來展望........................................................ 75 參考文獻............................................................... 76

    參考文獻
    [1] water.org : Water Charity For Safe Water & Sanitation 1990-2016.
    [2] Green Peace Org. http://www.greenpeace.org.
    [3] Water Resources Agency, Ministry of Economic Affairs, report by Sanlih E-Television All Rights Reserved. http://www.setn.com.
    [4] J. G. Dean, F. L. Bosqui, K. H. Lanouette, “ Removing heavy metals from waste water, ” Environ. Sci. Technol., 1972, vol. 6(6), pp. 518–522.
    [5] D. Feng, C. Aldrich, H. Tan, “ treatment of acid mine water by use of heavy metal precipitation and ion Exchange, ” MineralsEngineering, 2000, vol. 13, no.6, pp.623-642.
    [6] V. K. Gupta, A. K. Shrivastava, N. Jain, “ Biosorption of Chromium(VI) From Aqueous solutions by green algae spirogyra species, ” Water Research, Dec. 2001, vol. 35(17), pp. 4079–4085.
    [7] X. Guo, S. Zhang, X. Q. Shan, “ Adsorption of metal ions on lignin, ” J. Hazard. Mater, 2008, vol. 151, pp. 134−142.
    [8] M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, J. Hazard. Mater., 2009, vol. 170(2–3), pp. 969–977.
    [9] N. N. Nassar, J. Hazard. Mater., 2010, vol. 184(1–3), pp. 538–546.
    [10] S. Wang, Y. Dong, M. He, L. Chen, X. Yu, Appl. Clay Sci., 2009, vol. 43(2), pp. 164–171.
    [11] E. Pehlivan, T. Altun, S. Cetin, M. I. Bhanger, J. Hazard. Mater., 2009, vol. 167(1–3),pp. 1203–1208.
    [12] V. K. Gupta, A. Rastogi, “Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies, ” J. Hazard. Mater., 2008, vol.152, pp. 407−414.
    [13] Q. F. Lü, M. R. Huang, X. G. Li, “Synthesis and heavy-metal-ion sorption of puresulfophenylenediamine copolymer nanoparticles with intrinsic conductivity and stability, ” Chem.-Eur. J., 2007, vol. 13, pp. 6009−6018.
    [14] T. A. Saleh, V. K. Gupta, A. A. Al-Saadi, “Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: Experimental and computational study, ” J. Colloid Interface Sci., 2013, vol. 396, pp. 264−269.
    [15] H. J. Wang, A. L. Zhou, F. Peng, H. Yu, L. F. Chen, Mater. Sci. Eng., 2007, vol. 466, pp. 201.
    [16] Z. Ga, T. J. Bandosz, Z. Zhao, M. Han, J. Qiu, J. Hazard. Mater. 2009, vol. 167, pp. 357.
    [17] M. M. Rao, D. K. Ramana, K. Seshaiah, M. C. Wang, S. W. C. Chien, J. Hazard. Mater., 2009, vol. 166(2–3), pp. 1006–1013.
    [18] K. Ladirvelu, C. Faur-Brasquet, L. P. Cloirec, Langmuir, 2000, vol. 16, pp. 8404.
    [19] R. L. Ramos, M. S. Berber-Mendoza, J. Salazar-Rabago, R. M. Guerrero-Coronado, J. Mendoza-Barron, J. Adsorption 2011, vol. 17, pp. 515.
    [20] M. Machida, T. Mochimaru, H. Tatsumoto, “Lead(II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution, ” Carbon 2006, vol. 44, pp. 2681−2688.
    [21] L. Hao, H. Song, L. Zhang, X. Wan, Y. Tang, Y. Lv, “SiO2/ graphene composite for highly selective adsorption of Pb(II) ion, ” J. Colloid Interface Sci., 2012, vol. 369, pp. 381−387.
    [22] Y. Yuan, G. Zhang, Y. Li, G. Zhang, F. Zhang, X. Fan, ”Poly(amidoamine) modified graphene oxide as an efficient adsorbent for heavy metal ions ” ,Polym. Chem., 2013, vol. 4, pp. 2164.
    [23] J. Yang, J. X. Wu, Q. F. Lü, T. T. Lin, ”Facile Preparation of Lignosulfonate−Graphene Oxide−Polyaniline Ternary Nanocomposite as an Effective Adsorbent for Pb(II) Ions ”, ACS Sustainable Chem. Eng., 2014, vol. 2, pp. 1203−1211.
    [24] K. I. Bolotina, K. J. Sikesb, Z. Jianga, M. Klimac, G. Fudenberga, J. Honec, P. Kima,H. L. Stormera, “ Ultrahigh electron mobility in suspended graphene, ” Solid State Communications, 2008, vol. 146, pp. 351-355.
    [25] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, “ Superior Thermal Conductivity of Single-Layer Graphene, ” Nano Letters, Mar 2008, vol. 8, no. 3, pp. 902-907.
    [26] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, “ Graphene-based composite materials, ” Nature, July 2006, vol. 442, pp. 282-286.
    [27] R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist, R. Wrzalik, “ Adsorption of divalent metal ions from aqueous solutions using graphene oxide, ” Dalton Trans, 2013, vol. 42, pp. 5682–5689.
    [28] H. B. Bradl, “ Adsorption of heavy metal ions on soils and soils constituents, ” Journal of Colloid and Interface Science, 2004, vol. 277, pp. 1-18.
    [29] Conference des nations unies sur les changements climatiques, Paris 2015, COP21.CMP11. http://www.cop21.gouv.fr.
    [30] A. B. Hill, “ The Environment and Disease: Association or Causation?, ” Proc R Soc Med., May. 1965, vol. 58(5), pp. 295–300.
    [31] A. Navas-Acien, E. Guallar, E. K. Silbergeld, S. J. Rothenberg, “ Lead Exposure and Cardiovascular Disease: A Systematic Review, ” Environmental Health Perspectives, Mar. 2007, Vol. 115, No. 3, pp. 472-482.
    [32] L. E. A. Zentner, P. H. C. Rondó, S. S. B. S. Mastroeni, “ Lead Contamination and Anthropometry of the Newborn Baby,” J Trop Pediatr, 2006, vol. 52 (5), pp. 369-371.
    [33] Centers for Disease Control and Prevention, USA, http://www.cdc.gov/nceh/lead.
    [34] S. K. Novoselov, A. K. Geim, S. V. Morozov,D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “ Electric Field Effect in Atomically Thin Carbon Films, ” Science, 2004, vol. 306, pp. 666-669.
    [35] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, “Graphene and Graphene Oxide: Synthesis,Properties, and Application, ” Adv. Mater., 2010, vol. 22, pp. 3906-3924.
    [36] C. Berger, Z. M. Song, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. Heer, “ Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, ” Journal of Physical Chemistry B, 2004, vol. 108, pp. 19912-19916.
    [37] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, ” Science, 2009, vol. 324, pp. 1312-1314.
    [38] S. Stankovich, D. A. Dikin, H. B. G. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen,R. S. Ruoff , “Graphene-based composite materials, ” Nature, 2006, vol. 442, pp. 282-286.
    [39] J. Ito, J. Nakamura, A. Natori, “ Semiconducting nature of the oxygen-adsorbed graphene sheet,” Journal of Applied Physics, 2008, vol. 103, pp. 113712.
    [40] N. F. Chiu, T. Y. Huang, ”Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors, ” Sensors and Actuators B, 2014, vol. 197, pp. 35–42.
    [41] N. F. Chiu, T. Y. Huang, H. C. Lai, K. C. Liu, “ Graphene oxide-based SPR biosensor chip for immunoassay applications, ” Nanoscale Research Letters, 2014, vol. 9, pp. 445.
    [42] W. S. Hummers , R. E. Offeman, “Preparation of graphitic oxide, ” J. Am. Chem. Soc., 1958, vol. 80, pp. 1339-1339.
    [43] F. Münz, “Polyamino carboxylic acids to I. G. Farbenindustrie”, DE 718 981, 1935.
    [44] F. Fu, Q. Wang, ” Removal of heavy metal ions from wastewaters: A review, ” Journal of Environmental Management, 2011, vol. 92, pp. 407-418.
    [45] L. Davidsson, E. Ziegler, C. Zeder, T. Walczyk, R. Hurrell, “ Sodium iron EDTA [NaFe(III)EDTA] as a food fortificant: erythrocyte incorporation of iron and apparent absorption of zinc, copper, calcium, and magnesium from a complementary food based on wheat and soy in healthy infants ” Am J Clin Nutr, Jan. 2005, vol. 81, no.1, pp. 104-109.
    [46] Food and Drug Administration (FDA), Ministry of Health, Taiwan. http://www.fda.gov.tw
    [47] J. J. Chisolm, “ BAL, EDTA, DMSA and DMPS in the treatment of lead poisoning in children, ” JJ Chisolm-Journal of Toxicology: Clinical Toxicology, 1992, vol. 30(4), pp. 493-504.
    [48] I. A. Rahman, J. Ismail, H. Dsman “Effect of nitric acid digestion on organic materials and silica in rise husk, ” J. Mater. Chem., 1997, vol. 7, pp. 1505-1509.
    [49] R. Robert, S. Barbati, “Intermediates in wet oxidation of cellulose : identification of hydroxyl radical and characterization of hydrogen peroxide,” Water Res.,2002, vol. 36, pp. 4821-4829.
    [50] R. P. Dhakal, K. N. Ghimire, K. Inoue, “Adsorptive separation of heavy metals from an aquatic environment using orange, ” Hydromet-allurgy, 2005, vol. 79, pp. 182-190.
    [51] K. J. Tiemann, G. Gamez, K. Dokken, J. G. Parsons, J. L. Gardea-Torresdey, “Chemical modification and X-ray adsorption studies for lead(II) binding by Medicago sativa (alfalfa) biomass,” Microchem. J., 2002, vol. 71, pp. 287-293.
    [52] T. S. Anirudhan, S. Jalajamony, S. S. Sreekumari, “Adsorption of heavy metal ions from aqueous solutions by amine and carboxylate functionalism bentonites, ” Applied clay science, 2012, vol. 65-66, pp. 67-71.
    [53] S. Brunauer, L. S. Deming, W. E. Deming, E. Teller, “On a Theory of the van der Waals Adsorption of Gases, ” J. Am. Chem. Soc., 1940, vol. 62 (7), pp. 1723–1732.
    [54] H. Freundlich, “Ueber die Adsorption in Loesungen Z, ” Phys. Chem., 1907, vol. 57, pp. 385-470.
    [55] I. Langmuir, “The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids, ” J. Am. Chem. Soc., 1916, vol. 38 (11), pp. 2221–2295.
    [56] S. Brunauer, P. H. Emmet, E. Teller, “ Adsorption of Gases in Multimolecular Layers., ” Journal of the American Chemical Society, 1939, vol. 60, pp. 309-319.
    [57] J. Tóth, “A Theory of Groundwater Motion in Small Drainage Basins in Central Alberta, ” Journal of Geophysical Research, vol. 67(11), pp. 4375-4388.
    [58] O. Redlich, D. L. Peterson, “A Useful Adsorption Isotherm, ” J. Phys. Chem., 1959, vol. 63 (6), pp. 1024–1024.
    [59] S. Lagergren, “ Zur theorie der sogenannten adsorption geloster stoffe, ” K. Sven. Vetenskapsakad. Handl., 1898, vol. 24, pp. 1–39.
    [60] J. Zeldowitsch, “ Uber den mechanismus der katalytischen oxydation von CO an MnO2, ” Acta Physicochim. URSS, 1934, vol. 1, pp. 364–449.
    [61] A. G. Ritchie, “ Alternative to the Elovich equation for the kinetics of adsorption of gases on solids, ” J. Chem. Soc., Faraday Trans. I, 1977, vol. 73, pp. 1650–1653.
    [62] Y. S. Ho, “ Adsorption of heavy metals from waste streams by peat, ” Ph.D. Thesis, University of Birmingham, Birmingham, U.K., 1995.
    [63] R. J. Silbey, R. A. Alberty, M. G. Bawendi, Physical Chemistry, 2004, pp. 77-80.
    [64] T. Preocanin, F. Supljika, N. Kalay, J. Colloid, Interface Sci., 2011, vol. 354, pp. 318–321.
    [65] J. I. Paredes, S. R. Villar, A. M. Alonso, J. M. Tascon, “ Graphene oxide dispersions in organic solvents,” Langmuir, 2008, vol 24, pp.10560–4.
    [66] J. Zhu, S. Wei, J. Ryu, M. Budhathoki, G. Liang, Z. Guo, J. Mater. Chem., 2010, vol 20, pp. 4937.
    [67] S. F. Hou, S. J. Su, M. L.Kasner, P. Shah,K. Patel, C. J. Madarang, “Formation of highly stable dispersions of silane-functionalized reduced graphene oxide, ” Chem Phys Letter, 2010, vol 501, pp.68–74.
    [68] I. E. Mejias Carpio, D. J. Mangadlao, H. N. Nguyen, R. C. Advincula, D. F. Rodrigues, “Graphene oxide functionalized with ethylenediamine triacetic acid for heavy metal adsorption and anti-microbial applications,” Carbon, 2014, vol 77, pp.289–301.
    [69] C. J. Madadrang, H. Y. Kim, G. Gao, N. Wang, J. Zhu, H. Feng, M. Gorring, M. L. Kasner, S. Hou, “Adsorption Behavior of EDTA-Graphene Oxide for Pb(II) Removal, ” ACS Appl. Mater. Interfaces, 2012, vol. 4, pp. 1186-1193.
    [70] G. Zhao, X. Ren, X. Gao, X. Tan, J. Li, C. Chen, Y. Huang, X. Wang, “Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets, ” Dalton Trans., July 2011, vol. 40, pp. 10945–10952.

    下載圖示
    QR CODE