研究生: |
蕭介孟 Hsiao Chieh Meng |
---|---|
論文名稱: |
奈米聚苯胺在二氧化碳捕獲上之研究 Nanostructured Polyaniline for Carbon Dioxide Capture |
指導教授: |
陳家俊
Chen, ChiaChun 陳貴賢 Chen, Kuei-Hsien 林麗瓊 Chen, Li-Chyong |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 二氧化碳捕獲 、高分子 、聚苯胺 、碳布 |
英文關鍵詞: | carbon dioxide capture, polymer, polyaniline, carbon cloth |
論文種類: | 學術論文 |
相關次數: | 點閱:312 下載:14 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討奈米結構的聚苯胺(nanostructured polyaniline)在二氧化碳捕獲(carbon dioxide capture)的應用,發現相較於其他已知的材料如聚乙烯亞胺polyethylenimine (PEI)、乙醇胺monoethanolamine (MEA)等,具有可降低因升溫脫附CO2所需的能量消耗,且容易合成、化學穩定性佳等優點。
研究中合成聚苯胺的方式主要分為三部份:(1) 化學方式合成奈米聚苯胺、(2)化學方式合成不同分子量的聚苯胺及(3)電化學方式將聚苯胺成長於碳布。並利用傅立葉轉換紅外線光譜儀(FTIR)以及穿透式電子顯微鏡儀(TEM),分析聚苯胺的特性與結構鑑定。另使用熱重分析儀(TGA)來量測聚苯胺在二氧化碳的吸附/脫附效率與穩定性的評估。其結果利用電化學方式合成所製備的聚苯胺線/碳布在1大氣壓、30OC吸附、70OC脫附的條件下具有較佳的二氧化碳捕獲效率,29.4 mg(CO2)/g(PANI)。
最後,再進一步探討在含水氣的情況下捕獲二氧化碳,發現因水氣的幫助其二氧化碳捕獲效率更提升至54.5 mg(CO2)/g(PANI)。經20次連續二氧化碳吸附/脫附後,仍幾乎保有第一次吸附/脫附二氧化碳的捕獲量的93.2%,顯示了此種吸附劑具有高度的循環再現性。
The research was mainly investigated on the synthesis of nanostructured polyaniline and application on carbon dioxide capture. Due to lower CO2 desorption temperature, Polyaniline possess lower energy requirement and better cycle performance than other materials, such as monoethanolamine (MEA), polyethylenimine (PEI).
The synthesis of nanostructured polyaniline in this work was divided into three parts: (1) different molecular weight (2) different morphologies (3) polyaniline deposited on carbon cloth by electrochemical polymerization. Those polyaniline were characterized using Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). All the experiments including the efficiency and cycle performance of CO2 capture were carried out by Thermogravimetric Analyzer (TGA). The results indicated polyaniline nanowires deposited on carbon cloth showed the best CO2 capture capacity, 29.4 mg(CO2)/g(PANI).
Finally, the capture capacity of polyaniline was further increasing to 54.5 mg(CO2)/g(PANI) under moisture. After 20 adsorption/desorption cycles, the capacity still mostly maintain 93.2% compared to the initial data, which indicates that this adsorbent has a high degree of recyclability.
1. http://www.prb.org/Publications/Datasheets/2008/2008wpds.aspx
2. Pevida C.; Drage T. C.; Snape C.E., Carbon, 2008, 46, 1464-1474
3. Thambimuthu K.; Davison J.; Gupta M., "IPCC workshop on carbon dioxide capture and storage"
4. Song C., Catalysis Today, 2006, 115, 2–32
5. Carapellucci R.; Milazzo A, Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power and Energy, 2003, 217, 505–517
6. Figueroa, J.D.; Fout T.; Plasynski S.; Mcilveried H.; Srivastava R. D., Int. J. Green. Gas Control, 2008, 2, 9-20
7. CRS Report for Congress, "Capturing CO2 from Coal-fired Power Plants: Challenges for a Comprehensive Strategy"
8. Yang H.; Xu Z.; Fan M.; Gupta R.; Slimane R. B.; Bland A. E.; Wright I., Journal of Environmental Sciences, 2008, 20, 14-27
9. Jose D. F.; Timothy F.; Sean P.; Howard M., international journal of greenhouse gas control, 2008, 9-20
10. Idem R.; Wilson M.; Tontiwachwuthikul P.; Chakma A.; Veawab A.; Aroonwilas A.; Gelowitz D., Engineering Chemistry Research, 2006, 458, 2414–2420
11. Toshiyuki Y.; Hideaki Y.; Takashi T., J. Mater. Chem., 2004, 14, 951-957
12. Yue M. B.; Chun Y.; Cao Y.; Dong X.; Zhu H. J., Funct. Mater., 2006, 16, 1717–1722
13. Kato M.; Nakagawa K.; Essaki K.; Maezawa Y.; Takeda S.; Kogo R.; Hagiwara Y., International Journal of Applied Ceramic Technology, 2005, 2, 467–475
14. Walton K. S.; Abney M. B.; LeVan M. D., Microporous Mesoporous Mater., 2006, 91, 78-84
15. Gray M. L.; Soong Y.; Champagne K. J.; Pennline H.; Baltrus J. P.; Stevens R. W.; Khatri R. J.; Chuang S. S. C.; Filburn T., Fuel Processing Technology, 2005 , 86, 1449–1455
16. Abanades J. C.; Rubin E. S.; Anthony E. J., Industrial and Engineering Chemistry Research, 2004, 43, 3462–3466
17. Zhang X.; Zhang C. F.; Liu Y., Ind. Eng. Chem. Res., 2002, 41, 1135-1141
18. Idem R.; Wilson M., Tontiwachwuthikul P.; Chakma A.; Veawab A., Aroonwilas A.; Gelowitz D., Ind. Eng. Chem. Res., 2006, 45, 2414–2420
19. Knudsen J. N.; Jensen J. N.; Vilhelmsen P. J.; Biede O., Energy Proc., 2009, 1, 783–790
20. Feng B.; An H.; Tan E., Energy Fuels, 2007, 21, 426
21. Wang Y.; Lin S.; Suzuki Y., Energy Fuels, 2007, 21, 3317
22. Yong Z.; Mata V.; Rodrigues A. E., Sep. Purif. Rev., 2002, 26, 195
23. Sayari A.; Belmabkhout Y., J. Am. Chem. Soc., 2010, 132, 6312–6314
24. Yeh J. T.; Resnik K. P.; Rygle K.; Pennline H. W., Fuel Processing Technology, 2005, 86, 1533–1546
25. Wang J.; Long D.; Zhou H.; Chen Q.; Liu X.; Ling L., Energy Environ. Sci., 2012, 5, 5742–5749
26. Huang J.; Kaner R.B., Angew. Chem. Int. Ed., 2004, 43, 5817 –5821
27. Patra S.; Munichandraiah N., Journal of Applied Polymer Science, 2007, 106, 1160-1168
28. Prasannan A.; Truong T. B.; Hong P. D.; Somanathan N.; Shown I.; Imae T., Langmuir, 2011, 27, 766–773
29. Horng Y. Y.; Hsu Y. K.; Ganguly A.; Chen C. C.; Chen L. C.; Chen K.H., Electrochem. Commun., 2009, 11, 850-858
30. Adams P. N.; Laughlin P. J.; Monkman A. P., Polymer, 1996, 37, 3411-3417
31. Adams P. N.; Monkman A.P., Synthetic Metals, 1997, 87, 165–169
32. Adams P. N.; Laughlin P. J.; Monkman A.P., Synthetic Metals, 1996, 157-160
33. Sengupta P. P.; Kar P.; Adhikari B., Reactive & Functional Polymers, 2008, 68, 1103–1112