簡易檢索 / 詳目顯示

研究生: 姚建安
Yao, Chien-An
論文名稱: 以輔助療法口服多種氨基酸補充液增加小鼠肉瘤化學治療藥物效用的研究
Complementary Anti-sarcoma Effect of Oral Multiple Amino Acid Supplementation in Mice
指導教授: 鄭劍廷
Chien, Chiang-Ting
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 59
中文關鍵詞: 輔助療法細胞凋亡自噬大豆萃取胺基酸肉瘤小鼠
英文關鍵詞: complementary treatment, apoptosis, autophagy, soy-based amino acids, sarcoma, mice
DOI URL: http://doi.org/10.6345/NTNU202001713
論文種類: 學術論文
相關次數: 點閱:133下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討了口服大豆衍生的多種氨基酸(MAA)對低劑量cyclophosphamide(CTX)的治療反應以及腫瘤負荷,細胞凋亡和自噬的潛在機制和作用。使用嚴重的聯合免疫缺陷(SCID)小鼠,並注射入肉瘤180(S-180)細胞。測量對肉瘤生長的反應,使用了3-甲基腺嘌呤(3-methyladenine)或Atg5的siRNA剔除 (siRNA knockdown)。將植入肉瘤細胞,CTX和口服鹽水的小鼠與植入肉瘤細胞,CTX和口服大豆衍生MAA補充劑的小鼠進行比較。結果顯示大豆衍生的MAA補充劑可顯著降低總體肉瘤負擔,增加caspase 3表現和Bax / Bcl-2比率,以及細胞凋亡,並降低LC3 II為媒介的自噬。用3-甲基腺嘌呤或Atg5 siRNA處理在上調(upregulating)細胞凋亡和下調(downregulating)細胞自噬方面,顯示與CTX加大豆衍生的MAA補充劑有類似的反應。低劑量的CTX結合口服大豆衍生的MAA補充劑經由上調細胞凋亡和下調細胞自噬具有強烈的抗腫瘤作用。

    The use of a mixture of amino acids caused a selective apoptosis induction against a variety of tumor cell lines, reduced the adverse effects of anti-cancer drugs and increased the sensitivity of tumor cells to chemotherapeutic agents. We evaluated the effects and underlying mechanisms of soy-derived multiple amino acids’ oral supplementation on the therapeutic efficacy of low-dose cyclophosphamide (CTX) and on tumor growth, apoptosis, and autophagy in severe combined immunodeficiency (SCID) mice that were injected with sarcoma-180 (S-180) cells. 3-methyladenine or siRNA knockdown of Atg5 was used to evaluate its effect on sarcoma growth. A comparison of mice with implanted sarcoma cells, CTX, and oral saline and mice with implanted sarcoma cells, CTX, and an oral soy-derived multiple amino acid supplement indicated that the soy-derived multiple amino acid supplement significantly decreased overall sarcoma growth, increased the Bax/Bcl-2 ratio, caspase 3 expression, and apoptosis, and depressed LC3 II-mediated autophagy. Treatment with 3-methyladenine or Atg5 siRNA elicited similar responses as CTX plus soy-derived multiple amino acid in downregulating autophagy and upregulating apoptosis. A low dose of CTX combined with an oral soy-derived multiple amino acid supplement had a potent anti-tumor effect mediated through downregulation of autophagy and upregulation of apoptosis.

    Chapter 1 Introduction 1 Chapter 2 Methods and Materials 10 Chapter 3 Results 24 Chapter 4 Discussion 29 References

    1. Silver, J.K.; Raj, V.S.; Fu, J.B.; Wisotzky, E.M.; Smith, S.R.; Kirch, R.A. Cancer rehabilitation and palliative care: critical components in the delivery of high-quality oncology services. Support Care Cancer. 2015 Dec; 23 (12) : 3633-43. doi: 10.1007/s00520-015-2916-1. Epub 2015 Aug 28. PMID: 26314705.
    2. Economou, D. Palliative care needs of cancer survivors. Semin Oncol Nurs. 2014 Nov;30(4):262-7. doi: 10.1016/j.soncn.2014.08.008. PMID: 25361878.
    3. Kaasa, S.; Knudsen, A.K.; Lundeby, T,; Loge, J.H. Integration between oncology and palliative care: a plan for the next decade? Tumori. 2017 Jan 21; 103 (1) : 1-8. doi: 10.5301/tj.5000602. Epub 2017 Jan 12. PMID: 28085176.
    4. Vernieri, C.; Nichetti, F.; Raimondi, A.; Pusceddu, S.; Platania, M.; Berrino, F.; Braud, F.ed. Diet and supplements in cancer prevention and treatment: Clinical evidences and future perspectives. Crit Rev Oncol Hematol 2018 Mar; 123:57-73. doi: 10.1016/j.critrevonc.2018.01.002. Epub 2018 Feb 2.
    5. West, H.J. Complementary and Alternative Medicine in Cancer Care. JAMA Oncol. 2018 Jan 1;4(1):139. doi: 10.1001/jamaoncol.2017.3120.
    6. Qureshi, M .; Zelinski , E.; Larlson, L.E. Cancer and Complementary Therapies: Current Trends in Survivors' Interest and Use. Integr Cancer Ther
    . 2018 Sep;17(3):844-853.doi: 10.1177/1534735418762496. Epub 2018 Apr 9.
    7. Stomski, N.J.; Petterson, A.; Kristjanson, L.; Lobb, E.A.; Phillips, M.; Williams, A.; Morrison, P.; Joske, D. The effect of self-selected complementary therapies on cancer patients' quality of life and symptom distress: A prospective cohort study in an integrative oncology setting. Complement Ther Med. 2018 Apr;37:1-5. doi: 10.1016/j.ctim.2018.01.006. Epub 2018 Jan 12. PMID: 29609920.
    8. Ernst, E. Complementary therapies in palliative cancer care. Cancer. 2001 Jun 1; 91(11):2181-5. doi:10.1002/1097-0142(20010601)91:11 <2181::aid-cncr1247>3.0.co;2-l. PMID: 11391600.
    9. Genovese, M.I.; Barbosa, A.C.; Pinto, Mda. S.; Lajolo, F.M. Commercial soy protein ingredients as isoflavone sources for functional foods. Plant Foods Hum Nutr. 2007 Jun;62(2):53-8. doi: 10.1007/s11130-007-0041-0. PMID: 17333396.
    10. Cohen, L.A.; Zhao, Z.; Pittman, B.; Scimeca, J.A. Effect of intact and isoflavone-depleted soy protein on NMU-induced rat mammary tumorigenesis. Carcinogenesis. 2000 May;21(5):929-35. doi: 10.1093/carcin/21.5.929. PMID: 10783314.
    11. Dwyer, J.T.; Goldin, B.R.; Saul, N.; Gualtieri, L.; Barakat, S.; Adlercreutz, H. Tofu and soy drinks contain phytoestrogens. J Am Diet Assoc. 1994 Jul;94(7): 739-43. doi: 10.1016/0002-8223(94)91939-9. PMID: 8021414.
    12. Palmer, H.J.; Paulson, K.E. Reactive oxygen species and antioxidants in signal transduction and gene expression. Nutr Rev. 1997 Oct;55(10):353-61. doi: 10.1111/j.1753-4887.1997.tb01561.x. PMID: 9354079.
    13. Messina, M.J.; Persky, V.; Setchell, K.D.; Barnes, S. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer. 1994;21(2):113-31. doi: 10.1080/01635589409514310. PMID: 8058523.
    14. Diehn, M.; Cho, R.W.; Lobo, N.A.; Kalisky, T.; Dorie, M.J.; Kulp, A.N.; Qian, D.; Lam, J.S.; Ailles, L.E.; Wong, M.; Joshua, B.; Kaplan, M.J.; Wapnir, I.; Dirbas, F.M.; Somlo, G.; Garberoglio, C.; Paz, B.; Shen, J.; Lau, S.K.; Quake, S.R.; Brown, J.M.; Weissman, I.L.; Clarke, M.F. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009 Apr 9;458(7239):780-3. doi: 10.1038/nature07733. PMID: 19194462; PMCID: PMC2778612.
    15. He, Y.H. General survey of traditional Chinese medicine and Western medicine researches on tumor metastasis. Chin. J. Integr. Med. 2006, 12, 75–80. [PubMed]
    16. Sung, B.; Chung, H.S.; Kim, M.; Kang, Y.J.; Kim, D.H.; Hwang, S.Y.; Kim, M.J.; Kim, C.M.; Chung, H.Y.; Kim, N.D. Cytotoxic effects of solvent-extracted active components of Salvia miltiorrhiza Bunge on human cancer cell lines. Exp. Ther. Med. 2015, 9, 1421–1428. [PubMed]
    17. Pihlak, R.; Liivand, R.; Trelin, O.; Neissar, H.; Peterson, I.; Kivistik, S.; Lilo, K.; Jaal, J. Complementary medicine use among cancer patients receiving radiotherapy and chemotherapy: Methods, sources of information and the need for counselling. Eur. J. Cancer Care 2014, 23, 249–254. [CrossRef] [PubMed]
    18. Somasundaram, S.; Edmund, N.A.; Moore, D.T.; Small, G.W.; Shi, Y.Y.; Orlowski, R.Z. Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Res. 2002, 62, 3868–3875. [PubMed]
    19. Modrak, D.E.; Rodriguez, M.D.; Goldenberg, D.M.; Lew, W.; Blumenthal, R.D. Sphingomyelin enhances chemotherapy efficacy and increases apoptosis in human colonic tumor xenografts. Int. J. Oncol. 2002, 20, 379–384. [CrossRef] [PubMed]
    20. Kelloff, G.J.; Boone, C.W.; Crowell, J.A.; Steele, V.E.; Lubet, R.; Sigman, C.C. Chemopreventive drug development: Perspectives and progress. Cancer Epidemiol. Biomark. Prev. 1994, 3, 85–98.
    21. Navis, I.; Sriganth, P.; Premalatha, B. Dietary curcumin with cisplatin administration modulates tumour marker indices in experimental fibrosarcoma. Pharmacol. Res. 1999, 39, 175–179. [PubMed]
    22. Roomi, M.W.; Roomi, N.W.; Ivanov, V.; Kalinovsky, T.; Niedzwiecki, A.; Rath, M. Modulation of N-methyl-N-nitrosourea induced mammary tumors in Sprague-Dawley rats by combination of lysine, proline, arginine, ascorbic acid and green tea extract. Breast Cancer Res. 2005, 7, R291–R295. [CrossRef] [PubMed]
    23. Kulcsár, G.; Gaál, D.; Kulcsár, P.I.; Schulcz, Á.; Czömpöly, T. A mixture of amino acids and other small molecules present in the serum suppresses the growth of murine and human tumors in vivo. Int. J. Cancer 2013, 132, 1213–1221. [CrossRef] [PubMed]
    24. Cuervo, A.M. Autophagy: In sickness and in health. Trends Cell Biol. 2004, 14, 70–77. [CrossRef] [PubMed]
    25. Yang, C.C.; Yao, C.A.; Yang, J.C.; Chien, C.T. Sialic acid rescues repurified lipopolysaccharide-induced acute renal failure via inhibiting TLR4/PKC/gp91-mediated endoplasmic reticulum stress, apoptosis, autophagy, and pyroptosis signaling. Toxicol. Sci. 2014, 141, 155-165. [CrossRef] [PubMed]
    26. Fink, S.L.; Cookson, B.T. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 2005, 73, 1907–1916. [CrossRef] [PubMed]
    27. Gozuacik, D.; Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 2004, 23, 2891–2906. [CrossRef] [PubMed]
    28. Luo, S.; Rubinsztein, D.C. Apoptosis blocks Beclin 1-dependent autophagosome synthesis: An effect rescued by Bcl-xL. Cell Death Differ. 2010, 17, 268–277. [CrossRef] [PubMed]
    29. Abedin, M.J.; Wang, D.; McDonnell, M.A.; Lehmann, U.; Kelekar, A. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ. 2007, 14, 500–510. [CrossRef] [PubMed]
    30. Albert, V.; Hall, M.N. mTOR signaling in cellular and organismal energetics. Curr Opin Cell Biol. 2015; 33:55-66.
    31. Ong, P.S.; Wang, L.Z.; Dai, X.; Tseng, S.H.; Loo, S.J.; Sethi, G. Judicious toggling of mTOR activity to combat insulin resistance and cancer: current evidence and perspectives. Front Pharmacol. 2016; 7:395.
    32. Saxton, R.A.; Sabatini, D.M. mTOR Signaling in growth, metabolism, and disease. Cell. 2017; 168:960-976.
    33. Leontieva, O.V.; Blagosklonny, M.V. Gerosuppression by pan- mTOR inhibitors. Aging (Albany NY). 2016; 8:3535-3551.
    34. Leontieva, O.V.; Demidenko, Z.N; Blagosklonny, M.V. Dual mTORC1/C2 inhibitors suppress cellular geroconversion (a senescence program). Oncotarget. 2015; 6:23238-23248. doi: 10.18632/oncotarget.4836.
    35. Malagelada, C.; Jin, Z.H.; Jackson-Lewis, V.; Przedborski, S.; Greene, L.A. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease. J Neurosci. 2010; 30:1166-1175.
    36. Park, H.; Garrido-Laguna, I.; Naing, A.; Fu, S.; Falchook, G.S.; Piha-Paul, S.A.; Wheler, J.J.; Hong, D.S.; Tsimberidou, A.M.; Subbiah, V.; Zinner, R.G.; Kaseb, A.O.; Patel, S. et al. Phase I dose-escalation study of the mTOR inhibitor sirolimus and the HDAC inhibitor vorinostat in patients with advanced malignancy. Oncotarget. 2016; 7:67521-67531. doi: 10.18632/oncotarget.11750.
    37. Soliman, G.A.; Steenson, S.M.; Etekpo, A.H. Effects of metformin and a mammalian target of rapamycin (mTOR) ATP-competitive inhibitor on targeted metabolomics in pancreatic cancer cell line. Metabolomics (Los Angel). 2016; 6:2153-0769.
    38. Gramignano, G.; Lusso, M.R.; Madeddu, C.; Massa, E.; Serpe, R.; Deiana, L.; Lamonica, G.; Dessì, M.; Spiga, C.; Astara, G.; et al. Efficacy of L-carnitine administration on fatigue, nutritional status, oxidative stress, and related quality of life in 12 advanced cancer patients undergoing anticancer therapy. Nutrition 2006, 22, 136–145. [CrossRef] [PubMed]
    39. Chien, C.T.; Chang, T.C.; Tsai, C.Y.; Shyue, S.K.; Lai, M.K. Adenovirus-mediated bcl-2 gene transfer inhibits renal ischemia/reperfusion induced tubular oxidative stress and apoptosis. Am. J. Transplant. 2005, 5, 1194–1203. [PubMed]
    40. Liang, X.H.; Jackson, S.; Seaman, M.; Brown, K.; Kempkes, B.; Hibshoosh, H.; Levine, B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999, 402, 672–676. [PubMed]
    41. Helman, L.J.; Meltzer, P. Mechanisms of sarcoma development. Nat. Rev. Cancer 2003, 3, 685–694. [CrossRef] [PubMed]
    42. Hao, J.; Song, X.; Song, B.; Liu, Y.; Wei, L.; Wang, X.; Yu, J. Effects of lentivirus-mediated HIF-1a knockdown on hypoxia-related cisplatin resistance and their dependence on p53 status in fibrosarcoma cells. Cancer Gene Ther. 2008, 15, 449–455. [CrossRef] [PubMed]
    43. Sheen, J.H.; Zoncu, R.; Kim, D.; Sabatini, D.M. Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell 2011, 19, 613–628. [CrossRef] [PubMed]
    44. Singletary, K.; Milner, J. Diet, autophagy, and cancer: A review. Cancer Epidemiol. Biomark. Prev. 2008, 17, 1596–1610. [CrossRef] [PubMed]
    45. Powolny, A.A.; Bommareddy, A.; Hahm, E.R.; Normolle, D.P.; Beumer, J.H.; Nelson, J.B.; Singh, S.V. Chemopreventative potential of the cruciferous vegetable constituent phenethyl isothiocyanate in a mouse model of prostate cancer. J. Natl. Cancer Inst. 2011, 103, 571–584. [CrossRef] [PubMed]
    46. Xiong, X.; Wu, M.; Zhang, H.; Li, J.; Lu, B.; Guo, Y.; Zhou, T.; Guo, H.; Peng, R.; Li, X.; et al. Atg5 siRNA inhibits autophagy and enhances norcantharidin-induced apoptosis in hepatocellular carcinoma. Int. J. Oncol. 2015, 47, 1321–1328. [CrossRef] [PubMed]
    47. Wu, H.M.; Jiang, Z.F.; Ding, P.S.; Shao, L.J.; Liu, R.Y. Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells. Sci. Rep. 2015, 5. [CrossRef] [PubMed]
    48. Sinha, S.; Colbert, C.L.; Becker, N.; Wei, Y.; Levine, B. Molecular basis of the regulation of Beclin 1-dependent autophagy by the gamma-herpesvirus 68 Bcl-2 homolog M11. Autophagy 2008, 4, 989–997. [CrossRef] [PubMed]
    49. Besirli, C.G.; Chinskey, N.D.; Zheng, Q.D.; Zacks, D.N. Autophagy activation in the injured photoreceptor inhibits fas-mediated apoptosis. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4193–4199. [CrossRef] [PubMed]

    下載圖示
    QR CODE