研究生: |
吳浚鋒 WU, Chun-Feng |
---|---|
論文名稱: |
缺血預處理對200公尺捷泳運動表現之影響 The effects of ischemic preconditioning on 200-m swimming performance |
指導教授: |
鄭景峰
Cheng, Ching-Feng |
口試委員: |
郭堉圻
Kuo, Yu-Chi 周峻忠 Chou, Chun-Chung 鄭景峰 Cheng, Ching-Feng |
口試日期: | 2023/07/19 |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 血流阻斷 、肌肉氧飽和度 、再灌注 、游泳選手 、熱身活動 |
英文關鍵詞: | blood flow occlusion, muscle oxygenation, reperfusion, swimmer, warm-up |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202301473 |
論文種類: | 學術論文 |
相關次數: | 點閱:197 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:本研究旨在探討缺血預處理 (ischemic preconditioning, IPC) 對於游泳選手在200公尺捷泳運動表現之影響。方法:本研究招募13名高中以上之男性游泳選手。每位受試者依隨機交叉平衡之方式分別進行控制處理 (CON),IPC處理 (加壓220 mmHg) 與SHAM處理 (加壓20 mmHg),其中IPC與SHAM包含進行3個循環的5分鐘缺血與5分鐘再灌流。另外,在加壓前與後以及測驗前與後,均會量測血乳酸值、運動自覺努力強度和疼痛自覺程度,並全程使用近紅外線光譜儀監控肱三頭肌之肌肉氧飽和度。結果:不同實驗處理對於200公尺捷泳測驗的完成時間,皆無顯著差異 (IPC vs. SHAM vs. CON, 137 12 vs. 136 12 vs. 138 13秒, p > .05)。每50公尺分段的完成時間之間亦無顯著差異。3種實驗處理對於捷泳測驗後的血乳酸、運動自覺努力強度與疼痛自覺程度等指標,也無顯著差異。此外,IPC與其他實驗處理相比,無法影響運動過程中的肌肉氧飽和度指標。結論:IPC無法促進200公尺捷泳運動表現,建議未來研究可採用有氧代謝占比較高的長距離游泳,以檢驗IPC對於游泳表現的效果。
Purpose: To investigate the effects of ischemic preconditioning (IPC) on 200-m crawl swimming performance in swimmers. Methods: 13 male swimmers above senior high school level participated in this study. The swimmers were randomly assigned to 3 different treatments: control (CON), IPC (220 mmHg) or SHAM (20 mmHg). The IPC and SHAM involved 3 cycles of 5-minutes ischemia and 5-minutes reperfusion. In addition, the blood lactate concentration, rating of perceived exertion and visual analogue scale were measured before and after the treatments, as well as before and after the 200-m swimming test. The near infrared spectroscopy were used to monitor the muscle oxygen saturation of the triceps brachii at each treatment. Results: No significant difference in the time taken to complete the 200-m crawl swimming test was found among treatments (IPC vs. SHAM vs. CON, 137 12 vs. 136 12 vs. 138 13 s, p > .05), as well as in each 50-m split time. There were also no significant differences in the blood lactate concentration, rating of perceived exertion and visual analogue scale after the swimming test among treatments. Additionally, IPC did not have any effect on muscle oxygenation during swimming test compared to the other treatments. Conclusion: IPC has no ergogenic effect on 200-m crawl swimming performance. Further studies are needed to clarify the effects of IPC on long-distance swimming performance where aerobic energy dominates.
張政宏、鄭稚勇、鄭景峰 (2022)。缺血預處理對阻力運動表現之影響:系統性回顧。中華體育季刊,36(2),155-173。 https://doi.org/10.6223/qcpe.202206_36(2).0005
Alexiou, S. (2014). The effect of water temperature on the human body and the swimming effort. Biology of Exercise, 10(2), 9-23. http:doi.org/10.4127/jbe.2014.0075
Amann, M. (2012). Significance of Group III and IV muscle afferents for the endurance exercising human. Clinical and Experimental Pharmacology and Physiology, 39(9), 831-835. https://doi.org/10.1111/j.1440-1681.2012.05681.x
Andreas, M., Schmid, A. I., Keilani, M., Doberer, D., Bartko, J., Crevenna, R., Moser, E., & Wolzt, M. (2011). Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: A randomized crossover trial. Journal of Cardiovascular Magnetic Resonance, 13(1), 32. https://doi.org/10.1186/1532-429X-13-32
Angius, L., Pageaux, B., Crisafulli, A., Hopker, J., & Marcora, S. M. (2022). Ischemic preconditioning of the muscle reduces the metaboreflex response of the knee extensors. European Journal of Applied Physiology, 122(1), 141-155. https://doi.org/10.1007/s00421-021-04815-0
Arroyo-Martínez, E. A., Meaney, A., Gutiérrez-Salmeán, G., Rivera-Capello, J. M., González-Coronado, V., Alcocer-Chauvet, A., Castillo G1., Nájera N., Ceballos G., & Meaney, E. (2016). Is local nitric oxide availability responsible for myocardial salvage after remote preconditioning? Arquivos Brasileiros de Cardiologia, 107(2), 154-162. https://doi.org/10.1007/s00395-020-0809-z
Bailey, S. J., Winyard, P., Vanhatalo, A., Blackwell, J. R., DiMenna, F. J., Wilkerson, D. P., Tarr J, Benjamin N., & Jones, A. M. (2009). Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. Journal of Applied Physiology, 107(4), 1144-1155. https://doi.org/10.1152/japplphysiol.00722.2009
Bailey, T. G., Jones, H., Gregson, W., Atkinson, G., Cable, N. T., & Thijssen, D. H. (2012). Effect of ischemic preconditioning on lactate accumulation and running performance. Medicine & Science in Sports & Exercise, 44(11), 2084-2089. https://doi.org/10.1249/MSS.0b013e318262cb17
Barbosa, T. C., Machado, A. C., Braz, I. D., Fernandes, I. A., Vianna, L. C., Nobrega, A. C. L., & Silva, B. M. (2015). Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scandinavian Journal of Medicine & Science in Sports, 25(3), 356-364. https://doi.org/10.1111/sms.12229
Behrens, M., Zschorlich, V., Mittlmeier, T., Bruhn, S., & Husmann, F. (2020). Ischemic preconditioning did not affect central and peripheral factors of performance fatigability after submaximal isometric exercise. Frontiers in Physiology, 11, 371. https://doi.org/10.3389/fphys.2020.00371
Benedetti, F., Lanotte, M., Lopiano, L., & Colloca, L. (2007). When words are painful: Unraveling the mechanisms of the nocebo effect. Neuroscience, 147(2), 260-271. https://doi.org/10.1016/j.neuroscience.2007.02.020
Bøtker, H. E., Kharbanda, R., Schmidt, M. R., Bøttcher, M., Kaltoft, A. K., Terkelsen, C. J., Munk, K., Andersen, N. H., Hansen, T. M., Trautner, S., Lassen, J. F., Christiansen, E. H., Krusell, L. R., Kristensen, S. D., Thuesen, L., Nielsen, S. S., Rehling, M., Sørensen, H. T., Redington, A. N., & Nielsen, T. T. (2010). Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: A randomised trial. The Lancet, 375(9716), 727-734. https://doi.org/10.1016/S0140-6736(09)62001-8
Boushel, R., Langberg, H., Olesen, J., Gonzales‐Alonzo, J., Bülow, J., & Kjaer, M. (2001). Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scandinavian Journal of Medicine & Science in Sports, 11(4), 213-222. https://doi.org/10.1034/j.1600-0838.2001.110404.x
Crisafulli, A., Salis, E., Pittau, G., Lorrai, L., Tocco, F., Melis, F., Pagliaro, P., & Concu, A. (2006). Modulation of cardiac contractility by muscle metaboreflex following efforts of different intensities in humans. American Journal of Physiology-Heart and Circulatory Physiology, 291(6), H3035-H3042. https://doi.org/10.1152/ajpheart.00221.2006
Crisafulli, A., Tangianu, F., Tocco, F., Concu, A., Mameli, O., Mulliri, G., & Caria, M. A. (2011). Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. Journal of Applied Physiology, 111(2), 530-536. https://doi.org/10.1152/japplphysiol.00266.2011
Cheng, C. F., Kuo, Y. H., Hsu, W. C., Chen, C., & Pan, C. H. (2021). Local and remote ischemic preconditioning improves sprint interval exercise performance in team sport athletes. International Journal of Environmental Research and Public Health, 18(20), 10653. https://doi.org/10.3390/ijerph182010653
Cheung, C. P., Slysz, J. T., & Burr, J. F. (2020). Ischemic preconditioning: Improved cycling performance despite nocebo expectation. International Journal of Sports Physiology and Performance, 15(3), 354-360. https://doi.org/10.1123/ijspp.2019-0290
Clevidence, M. W., Mowery, R. E., & Kushnick, M. R. (2012). The effects of ischemic preconditioning on aerobic and anaerobic variables associated with submaximal cycling performance. European Journal of Applied Physiology, 112(10), 3649-3654. https://doi.org/10.1007/s00421-012-2345-5
Cocking, S., Landman, T., Benson, M., Lord, R., Jones, H., Gaze, D., Thijssen D. H. J., & George, K. (2017). The impact of remote ischemic preconditioning on cardiac biomarker and functional response to endurance exercise. Scandinavian Journal of Medicine & Science in Sports, 27(10), 1061-1069. https://doi.org/10.1111/sms.12724
Cocking, S., Wilson, M. G., Nichols, D., Cable, N. T., Green, D. J., Thijssen, D. H., & Jones, H. (2018). Is there an optimal ischemic-preconditioning dose to improve cycling performance? International Journal of Sports Physiology and Performance, 13(3), 274-282. https://doi.org/10.1123/ijspp.2017-0114
Cocking, S., Ihsan, M., Jones, H., Hansen, C., Timothy Cable, N., Thijssen, D. H., & Wilson, M. G. (2021). Repeated sprint cycling performance is not enhanced by ischaemic preconditioning or muscle heating strategies. European Journal of Sport Science, 21(2), 166-175. https://doi.org/10.1080/17461391.2020.1749312
Cortés, D. O., Puflea, F., De Backer, D., Creteur, J., & Vincent, J. L. (2015). Near infrared spectroscopy (NIRS) to assess the effects of local ischemic preconditioning in the muscle of healthy volunteers and critically ill patients. Microvascular Research, 102, 25-32. https://doi.org/10.1016/j.mvr.2015.08.002
Craig Jr, A. B., & Pendergast, D. R. (1979). Relationships of stroke rate, distance per stroke, and velocity in competitive swimming. Medicine and Science in Sports, 11(3), 278-283.
Cruz, R. S. D. O., de Aguiar, R. A., Turnes, T., Pereira, K. L., & Caputo, F. (2015). Effects of ischemic preconditioning on maximal constant-load cycling performance. Journal of Applied Physiology, 119(9), 961-967. https://doi.org/10.1152/japplphysiol.00498.2015
Cruz, R. S. D. O., de Aguiar, R. A., Turnes, T., Salvador, A. F., & Caputo, F. (2016). Effects of ischemic preconditioning on short-duration cycling performance. Applied Physiology, Nutrition, and Metabolism, 41(8), 825-831. https://doi.org/10.1139/apnm-2015-0646
da Mota, G. R.,Willis, S. J., Sobral, N. D. S., Borrani, F., Billaut, F., & Millet, G. P. (2019). Ischemic preconditioning maintains performance on two 5-km time trials in hypoxia. Medicine & Science in Sports & Exercise, 51(11), 2309-2317. https://doi.org/10.1249/MSS.0000000000002049
de Groot, P. C., Thijssen, D. H., Sanchez, M., Ellenkamp, R., & Hopman, M. T. (2010). Ischemic preconditioning improves maximal performance in humans. European Journal of Applied Physiology, 108(1), 141-146. https://doi.org/10.1007/s00421-009-1195-2
de Queiros, V. S., Dantas, M., Teixeira, R. V., de Ribeiro Dos, V. M. M., de Matos, D. G., da Silva, L. F., Dantas, P. M. S., & Cabral, B. G. A. T. (2021). Effect of a short ischemic preconditioning protocol on 100-m front crawl performance. Human Movement, 22(1), 70-76. https://doi.org/10.5114/hm.2021.100326
DeLorey, D. S., Kowalchuk, J. M., & Paterson, D. H. (2004). Effects of prior heavy-intensity exercise on pulmonary O2 uptake and muscle deoxygenation kinetics in young and older adult humans. Journal of Applied Physiology, 97(3), 998-1005. https://doi.org/10.1152/japplphysiol.01280.2003
de Souza, H. L., Arriel, R. A., Mota, G. R., Hohl, R., & Marocolo, M. (2021). Does ischemic preconditioning really improve performance or it is just a placebo effect? PLoS ONE, 16(5), e0250572. https://doi.org/10.1371/journal.pone.0250572
Eisen, A., Fisman, E. Z., Rubenfire, M., Freimark, D., McKechnie, R., Tenenbaum, A., Motro M., & Adler, Y. (2004). Ischemic preconditioning: Nearly two decades of research. A comprehensive review. Atherosclerosis, 172(2), 201-210. https://doi.org/10.1016/s0021-9150(03)00238-7
Enko, K., Nakamura, K., Yunoki, K., Miyoshi, T., Akagi, S., Yoshida, M., Toh, N., Sangawa, M., Nishii, N., Nagase, S., Kohno, K., Morita, H., Kusano, K., & Ito, H. (2011). Intermittent arm ischemia induces vasodilatation of the contralateral upper limb. The Journal of Physiological Sciences, 61(6), 507-513. https://doi.org/507-513. 10.1007/s12576-011-0172-9
Feldmann, A., Schmitz, R. W., & Erlacher, D. (2019). Near-infrared spectroscopy-derived muscle oxygen saturation on a 0% to 100% scale: Reliability and validity of the Moxy Monitor. Journal of Biomedical Optics, 24(11), 1-11. https://doi.org/10.1117/1.JBO.24.11.115001
Ferreira, T. N., Sabino-Carvalho, J. L., Lopes, T. R., Ribeiro, I. C., Succi, J. E., Da Silva, A. C., & Silva, B. M. (2016). Ischemic preconditioning and repeated sprint swimming: A placebo and nocebo study. Medicine & Science in Sports & Exercise, 48(10), 1967-1975. https://doi.org/10.1249/mss.0000000000000977
Foster, G. P., Giri, P. C., Rogers, D. M., Larson, S. R., & Anholm, J. D. (2014). Ischemic preconditioning improves oxygen saturation and attenuates hypoxic pulmonary vasoconstriction at high altitude. High Altitude Medicine & Biology, 15(2), 155-161. https://doi.org/10.1089/ham.2013.1137
Gandra, P. G., Nogueira, L., & Hogan, M. C. (2012). Mitochondrial activation at the onset of contractions in isolated myofibres during successive contractile periods. The Journal of Physiology, 590(15), 3597-3609. https://doi.org/10.1113/jphysiol.2012.232405
Gibson, N., Mahony, B., Tracey, C., Fawkner, S., & Murray, A. (2015). Effect of ischemic preconditioning on repeated sprint ability in team sport athletes. Journal of Sports Sciences, 33(11), 1182-1188. https://doi.org/10.1080/02640414.2014.988741
Gibson, N., White, J., Neish, M., & Murray, A. (2013) Effect of ischemic preconditioning on land-based sprinting in team-sport athletes. International Journal of Sports Physiology and Performance. 8(6), 671-676. https://doi.org/10.1123/ijspp.8.6.671
Gopinath, S. P., Robertson, C. S., Grossman, R. G., & Chance, B. (1993). Near-infrared spectroscopic localization of intracranial hematomas. Journal of Neurosurgery, 79(1), 43-47. https://doi.org/10.3171/jns.1993.79.1.0043
Griffin, P. J., Ferguson, R. A., Gissane, C., Bailey, S. J., & Patterson, S. D. (2018). Ischemic preconditioning enhances critical power during a 3 minute all-out cycling test. Journal of Sports Sciences, 36(9), 1038-1043. https://doi.org/10.1080/02640414.2017.1349923
Guellich, A., Seiler, S., & Emrich, E. (2009). Training methods and intensity distribution of young world-class rowers. International Journal of Sports Physiology and Performance, 4(4), 448-460. https://doi.org/10.1123/ijspp.4.4.448
Halley, S. L., Marshall, P., & Siegler, J. C. (2019). The effect of IPC on central and peripheral fatiguing mechanisms in humans following maximal single limb isokinetic exercise. Physiological Reports, 7(8), e14063. https://doi.org/10.14814/phy2.14063
Halley, S. L., Peeling, P., Brown, H., Sim, M., Mallabone, J., Dawson, B., & Binnie, M. J. (in press). Repeat application of ischemic preconditioning improves maximal 1,000-m kayak ergometer performance in a simulated competition format. Journal of Strength and Conditioning Research. https://doi.org/10.1519/JSC.0000000000003748
Hamlin, M. J., Marshall, H. C., Hellemans, J., & Ainslie, P. N. (2010). Effect of intermittent hypoxia on muscle and cerebral oxygenation during a 20-km time trial in elite athletes: A preliminary report. Applied Physiology, Nutrition, and Metabolism, 35(4), 548-559. https://doi.org/10.1139/H10-044
Hausenloy, D. J., & Yellon, D. M. (2008). Remote ischaemic preconditioning: Underlying mechanisms and clinical application. Cardiovascular research, 79(3), 377-386. https://doi.org/10.1093/cvr/cvn114
Heusch, G., Bøtker, H. E., Przyklenk, K., Redington, A., & Yellon, D. (2015). Remote ischemic conditioning. Journal of the American College of Cardiology, 65(2), 177-195. https://doi.org/10.1016/j.jacc.2014.10.031
Hittinger, E. A., Maher, J. L., Nash, M. S., Perry, A. C., Signorile, J. F., Kressler, J., & Jacobs, K. A. (2015). Ischemic preconditioning does not improve peak exercise capacity at sea level or simulated high altitude in trained male cyclists. Applied Physiology, Nutrition, and Metabolism, 40(1), 65-71. https://doi.org/10.1139/apnm-2014-0080
Incognito, A. V., Burr, J. F., & Millar, P. J. (2016). The effects of ischemic preconditioning on human exercise performance. Sports Medicine, 46(4), 531-544. https://doi.org/10.1007/s40279-015-0433-5
Jacobs, R. A., & Lundby, C. (2013). Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. Journal of Applied Physiology, 114(3), 344-350. https://doi.org/10.1152/japplphysiol.01081.2012
James, C. A., Willmott, A. G., Richardson, A. J., Watt, P. W., & Maxwell, N. S. (2016). Ischaemic preconditioning does not alter the determinants of endurance running performance in the heat. European Journal of Applied Physiology, 116(9), 1735-1745. https://doi.org/10.1007/s00421-016-3430-y
Jean-St-Michel, E., Manlhiot, C., Li, J., Tropak, M., Michelsen, M. M., Schmidt, M. R., McCrindle B. W., Wells G. D., & Redington, A. N. (2011). Remote preconditioning improves maximal performance in highly trained athletes. Medicine & Science in Sports & Exercise, 43(7), 1280-1286. https://doi.org/10.1249/mss.0b013e318206845d
Jöbsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198(4323), 1264-1267. https://doi.org/10.1126/science.929199
Kaur, G., Binger, M., Evans, C., Trachte, T., & Van Guilder, G. P. (2017). No influence of ischemic preconditioning on running economy. European Journal of Applied Physiology, 117(2), 225-235. https://doi.org/10.1007/s00421-016-3522-8
Kavazis, A. N. (2009). Exercise preconditioning of the myocardium. Sports Medicine, 39(11), 923-935. https://doi.org/10.2165/11317870-000000000-00000
Kido, K., Suga, T., Tanaka, D., Honjo, T., Homma, T., Fujita, S., Hamaoka, T., & Isaka, T. (2015). Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work‐to‐work test. Physiological Reports, 3(5), e12395. https://doi.org/10.14814/phy2.12395
Kilduff, L. P., Finn, C. V., Baker, J. S., Cook, C. J., & West, D. J. (2013). Preconditioning strategies to enhance physical performance on the day of competition. International Journal of Sports Physiology and Performance, 8(6), 677-681. https://doi.org/10.1123/ijspp.8.6.677
Kurth, C. D., Steven, J. M., Benaron, D., & Chance, B. (1993). Near-infrared monitoring of the cerebral circulation. Journal of Clinical Monitoring, 9(3), 163-170. https://doi.org/10.1007/BF01617023
Larsen, F. J., Schiffer, T. A., Borniquel, S., Sahlin, K., Ekblom, B., Lundberg, J. O., & Weitzberg, E. (2011). Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metabolism, 13(2), 149-159. https://doi.org/10.1016/j.cmet.2011.01.004
Liem, D. A., Verdouw, P. D., Ploeg, H., Kazim, S., & Duncker, D. J. (2002). Sites of action of adenosine in interorgan preconditioning of the heart. American Journal of Physiology-Heart and Circulatory Physiology, 283(1), H29-H37. https://doi.org/10.1152/ajpheart.01031.2001
Lisbôa, F. D., Turnes, T., Cruz, R. S., Raimundo, J. A., Pereira, G. S., & Caputo, F. (2017). The time dependence of the effect of ischemic preconditioning on successive sprint swimming performance. Journal of Science & Medicine in Sport, 20(5), 507-511. https://doi.org/10.1016/j.jsams.2016.09.008
Marshall, P. W., Rasmussen, S. B., Krogh, M., Halley, S., & Siegler, J. C. (2020). Changes in the quadriceps spinal reflex pathway after repeated sprint cycling are not influenced by ischemic preconditioning. European Journal of Applied Physiology, 120(5), 1189-1202. https://doi.org/10.1007/s00421-020-04359-9
Marocolo, M., Da Mota, G. R., Pelegrini, V., & Coriolano, H. J. A. (2015). Are the beneficialeffects of ischemic preconditioning on performance partly a placebo effect? International Journal of Sports Medicine, 36(10), 822-825. https://doi.org/10.1055/s-0035-1549857
Marocolo, M., da Mota, G. R., Simim, M. A. M., & Coriolano, H. J. A. (2016). Myths and facts about the effects of ischemic preconditioning on performance. International Journal of Sports Medicine, 37(2), 87-96. https://doi.org/10.1055/s-0035-1565185
Marocolo, M., Willardson, J. M., Marocolo, I. C., da Mota, G. R., Simão, R., & Maior, A. S. (2016). Ischemic preconditioning and placebo intervention improves resistance exercise performance. Journal of Strength and Conditioning Research, 30(5), 1462-1469. https://doi.org/10.1519/JSC.0000000000001232
Marocolo, I. C., da Mota, G. R., Londe, A. M., Patterson, S. D., Neto, O. B., & Marocolo, M. (2017). Acute ischemic preconditioning does not influence high-intensity intermittent exercise performance. PeerJ, 5, e4118. https://doi.org/10.7717/peerj.4118
Marocolo, M., Simim, M. A. M., Bernardino, A., Monteiro, I. R., Patterson, S. D., & da Mota, G. R. (2019). Ischemic preconditioning and exercise performance: Shedding light through smallest worthwhile change. European Journal of Applied Physiology, 119(10), 2123-2149. https://doi.org/10.1007/s00421-019-04214-6
McGowan, C. J., Pyne, D. B., Thompson, K. G., & Rattray, B. (2015). Warm-up strategies for sport and exercise: Mechanisms and applications. Sports Medicine, 45(11), 1523-1546. https://doi.org/10.1007/s40279-015-0376-x
Morris, K. S., Jenkins, D. G., Osborne, M. A., Rynne, S. B., Shephard, M. E., & Skinner, T. L. (2019). The role of the upper and lower limbs in front crawl swimming: The thoughts and practices of expert high-performance swimming coaches. International Journal of Sports Science & Coaching, 14(5), 629-638. https://doi.org/10.1177/1747954119866358
Mougios, V., & Deligiannis, A. (1993). Effect of water temperature on performance, lactate production and heart rate at swimming of maximal and submaximal intensity. Journal of Sports Medicine and Physical Fitness, 33(1), 27-33.
Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation, 74(5), 1124-1136. https://doi.org/10.1161/01.cir.74.5.1124
Mulliri, G., Sainas, G., Magnani, S., Palazzolo, G., Milia, N., Orrù, A., Roberto, S., Marongiu, E., Milia, R., & Crisafulli, A. (2016). Ischemic preconditioning reduces hemodynamic response during metaboreflex activation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 310(9), R777-R787. https://doi.org/10.1152/ajpregu.00429.2015
Nobrega, A. C., O'Leary, D., Silva, B. M., Marongiu, E., Piepoli, M. F., & Crisafulli, A. (2014). Neural regulation of cardiovascular response to exercise: Role of central command and peripheral afferents. BioMed Research International, 2014, 478965. https://doi.org/10.1155/2014/478965
O’Brien, L., & Jacobs, I. (2022). Potential physiological responses contributing to the ergogenic effects of acute ischemic preconditioning during exercise: A narrative review. Frontiers in Physiology, 13, 1051529. https://doi.org/10.3389/fphys.2022.1051529
Paixão, R. C., da Mota, G. R., & Marocolo, M. (2014). Acute effect of ischemic preconditioning is detrimental to anaerobic performance in cyclists. International Journal of Sports Medicine, 35(11), e5. https://doi.org/10.1055/s-0034-1372628
Pan, S. J., & Li, L. R. (2011). Adenosine A2 receptors are involved in the activation of ATP-sensitive K+ currents during metabolic inhibition in guinea pig ventricular myocytes. Canadian Journal of Physiology and Pharmacology, 89(3), 187-196. https://10.1139/Y11-010
Patel, H. H., Moore, J., Hsu, A. K., & Gross, G. J. (2002). Cardioprotection at a distance: Mesenteric artery occlusion protects the myocardium via an opioid sensitive mechanism. Journal of Molecular and Cellular Cardiology, 34(10), 1317-1323. https://doi.org/10.1006/jmcc.2002.2072
Paton, C. D., & Hopkins, W. G. (2001). Tests of cycling performance. Sports Medicine, 31(7), 489-496. https://doi.org/10.2165/00007256-200131070-00004
Paradis-Deschênes, P., Joanisse, D. R., & Billaut, F. (2016). Ischemic preconditioning increases muscle perfusion, oxygen uptake, and force in strength-trained athletes. Applied Physiology, Nutrition, and Metabolism, 41(9), 938-944. https://doi.org/10.1139/apnm-2015-056
Paradis-Deschênes, P., Joanisse, D. R., & Billaut, F. (2018). Ischemic preconditioning improves time trial performance at moderate altitude. Medicine & Science in Sports & Exercise, 50(3), 533-541. https://doi.org/10.1249/mss.0000000000001473
Paradis-Deschênes, P., Joanisse, D. R., Mauriège, P., & Billaut, F. (2020). Ischemic preconditioning enhances aerobic adaptations to sprint-interval training in athletes without altering systemic hypoxic signaling and immune function. Frontiers in Sports and Active Living, 2, 41. https://doi.org/10.3389/fspor.2020.00041
Paradis-Deschênes, P., Lapointe, J., Joanisse, D. R., & Billaut, F. (2020). Similar recovery of maximal cycling performance after ischemic preconditioning, neuromuscular electrical stimulation or active recovery in endurance athletes. Journal of Sports Science & Medicine, 19(4), 761-771.
Patterson, S. D., Bezodis, N. E., Glaister, M., & Pattison, J. R. (2015). The effect of ischemic preconditioning on repeated sprint cycling performance. Medicine & Science in Sports & Exercise, 47(8), 1652-1658. https://doi.org/10.1249/MSS.0000000000000576
Pell, T. J., Baxter, G. F., Yellon, D. M., & Drew, G. M. (1998). Renal ischemia preconditions myocardium: Role of adenosine receptors and ATP-sensitive potassium channels. American Journal of Physiology-Heart and Circulatory Physiology, 275(5), H1542-H1547. https://doi.org/10.1152/ajpheart.1998.275.5.H1542
Rassaf, T., Totzeck, M., Hendgen-Cotta, U. B., Shiva, S., Heusch, G., & Kelm, M. (2014). Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circulation Research, 114(10), 1601-1610. https://doi.org/10.1161/CIRCRESAHA.114.303822
Richard, P., & Billaut, F. (2018). Time-trial performance in elite speed skaters after remote ischemic preconditioning. International Journal of Sports Physiology and Performance, 13(10), 1308-1316. https://doi.org/10.1123/ijspp.2018-0111
Sabino-Carvalho, J. L., Lopes, T. R., Obeid-Freitas, T., Ferreira, T. N., Succi, J. E., Silva, A. C., & Silva, B. M. (2017). Effect of ischemic preconditioning on endurance performance does not surpass placebo. Medicine & Science in Sports & Exercise, 49(1), 124-132. https://doi.org/10.1249/MSS.0000000000001088
Salvador, A. F., De Aguiar, R. A., Lisbôa, F. D., Pereira, K. L., Rogério, S. D. O., & Caputo, F. (2016). Ischemic preconditioning and exercise performance: A systematic review and meta-analysis. International Journal of Sports Physiology and Performance, 11(1), 4-14. https://doi.org/10.1123/ijspp.2015-0204
Scheeren, T. W. L., Schober, P., & Schwarte, L. A. (2012). Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): Background and current applications. Journal of Clinical Monitoring and Computing, 26(4), 279-287. https://doi.org/10.1007/s10877-012-9348-y
Schoemaker, R. G., & van Heijningen, C. L. (2000). Bradykinin mediates cardiac preconditioning at a distance. American Journal of Physiology-Heart and Circulatory Physiology, 278(5), H1571-H1576. https://doi.org/10.1152/ajpheart.2000.278.5.H1571
Seeger, J. P., Timmers, S., Ploegmakers, D. J., Cable, N. T., Hopman, M. T., & Thijssen, D. H. (2017). Is delayed ischemic preconditioning as effective on running performance during a 5 km time trial as acute IPC? Journal of Science and Medicine in Sport, 20(2), 208-212. https://doi.org/10.1016/j.jsams.2016.03.010
Seifert, L., & Chollet, D. (Eds.). (2011). World book of swimming: From science to performance. Nova Science Publishers. https://doi.org/10.13140/2.1.3260.5128
Slysz, J. T., Petrick, H. L., Marrow, J. P., & Burr, J. F. (2020). An examination of individual responses to ischemic preconditioning and the effect of repeated ischemic preconditioning on cycling performance. European Journal of Sport Science, 20(5), 633-640. https://doi.org/10.1080/17461391.2019.1651401
Smith, K. J., & Billaut, F. (2010). Influence of cerebral and muscle oxygenation on repeated-sprint ability. European Journal of Applied Physiology, 109(5), 989-999. https://doi.org/10.1007/s00421-010-1444-4
Tanaka, D., Suga, T., Tanaka, T., Kido, K., Honjo, T., Fujita, S., Hamaoka, T., & Isaka, T. (2016). Ischemic preconditioning enhances muscle endurance during sustained isometric exercise. International Journal of Sports Medicine, 37(8), 614-618. https://doi.org/10.1055/s-0035-1565141
Ter Beek, F., Jokumsen, P. S., Sloth, B. N., Stevenson, A. J., & Larsen, R. G. (2022). Ischemic preconditioning attenuates rating of perceived exertion but does not improve maximal oxygen consumption or maximal power output. Journal of Strength and Conditioning Research, 36(9), 2479-2485. https://doi.org/10.1519/JSC.0000000000003625
Tocco, F., Marongiu, E., Ghiani, G., Sanna, I., Palazzolo, G., Olla, S., Pusceddu, M., Sanna, P., Corona, A., Concu, A., & Crisafulli, A. (2015). Muscle ischemic preconditioning does not improve performance during self-paced exercise. International Journal of Sports Medicine, 36(1), 9-15. https://doi.org/10.1055/s-0034-1384546
Tomschi, F., Niemann, D., Bloch, W., Predel, H. G., & Grau, M. (2018). Ischemic preconditioning enhances performance and erythrocyte deformability of responders. International Journal of Sports Medicine, 39(8), 596-603. https://doi.org/10.1055/a-0631-2887
Turnes, T., de Aguiar, R. A., de Oliveira Cruz, R. S., Salvador, A. F., Lisbôa, F. D., Pereira, K. L., Pereira, K, L., Gesser Raimundo, J, A., & Caputo, F. (2018). Impact of ischaemia-reperfusion cycles during ischaemic preconditioning on 2000-m rowing ergometer performance. European Journal of Applied Physiology, 118(8), 1599-1607. https://doi.org/10.1007/s00421-018-3891-2
Weinbrenner, C., Schulze, F., Sárváry, L., & Strasser, R. H. (2004). Remote preconditioning by infrarenal aortic occlusion is operative via δ1-opioid receptors and free radicals in vivo in the rat heart. Cardiovascular Research, 61(3), 591-599. https://doi.org/10.1016/j.cardiores.2003.10.008
Weyand, P., Curcton, K., Conley, D., & Sloniger, M. (1993). 586 Percentage anaerobic energy utilized during track running events. Medicine & Science in Sports & Exercise, 25(5), S105.
Williams, N. (2017). The Borg rating of perceived exertion (RPE) scale. Occupational Medicine, 67(5), 404-405. https://doi.org/10.1093/occmed/kqx063
Williams, N., Russell, M., Cook, C. J., & Kilduff, L. P. (2021). Effect of ischemic preconditioning on maximal swimming performance. Journal of Strength and Conditioning Research, 35(1), 221-226. https://doi.org/10.1519/JSC.0000000000002485
World Aquatics. (2017, January 1). FINA Requirements for Swimwear Approval. https://resources.fina.org/fina/document/2021/02/23/7d18d53c-cf57-47f2-adc9-4649c1926044/frsa.pdf
World Aquatics. (2019, July 19). FINA General Rules. https://resources.fina.org/fina/document/2021/01/12/35a6472c-8f19-416f-8c0c-0edef2773473/_logo_fina_general_rules_19.07.2019.pdf
World Aquatics. (2020, February 1). FINA Swimming Pool Certificate Guide. https://resources.fina.org/fina/document/2021/01/19/da8798f0-e89f-4e8c-9e21-5452c16a55dd/fina_swimming_pool_certificate_guide_february_2020_1.pdf