簡易檢索 / 詳目顯示

研究生: 徐振倫
論文名稱: 國際觀光旅館之住宿人數預測模型研究
The Study of Forecasting Model on Tourist Arrivals in the International Tourist Hotels
指導教授: 方近義
學位類別: 碩士
Master
系所名稱: 餐旅管理與教育研究所
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 80
中文關鍵詞: 差分自我迴歸移動平均向量自我迴歸模型國際觀光旅館預測
英文關鍵詞: ARIMA, VAR, International tourist hotel, Forecasting
論文種類: 學術論文
相關次數: 點閱:329下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 觀光產業影響所及餐飲、旅館、運輸、民生消費等產業,可帶動整體相關經濟發展,為一國家之軟實力,其重要性不可言喻。2009年開放兩岸直航、2010年松山機場直飛上海虹橋機場及日本羽田機場,國際旅客倍增,許多企業都看好台灣市場,紛紛興建大型連鎖旅館。
    本研究針對六家星級國際觀光旅館,以時間序列ARIMA與向量自我迴歸模型VAR方法,除了以歷年住宿人數為預測基礎,突破單一變數的影響,加入影響旅館業住宿人數的三項總體經濟變數(國內生產毛額、消費者物價指數及匯率)與旅館特性變數,實證探討比較不同方法對星級國際觀光旅館之住宿人數預測模型之建立。資料來源為交通部觀光局公佈之國際觀光旅館住宿人次統計資料及行政院主計處「中華民國統計資訊網」,資料選取為從2000年一月至2010年十二月,共132筆月歷史觀察值。
    透過上述方法,預期成果能針對個別之星級國際觀光旅館建立住宿人數預測模型,並加入總體經濟因素分析及旅館特性變數,提高模型預測能力,以MAPE為模型選擇標準,所得結果,俾作星級國際觀光旅館業者及相關單位之施政參考依據。

    Taiwan’s tourism industry is getting more prosperous and booming after the policy deregulation for Chinese tourists to Taiwan since July of 2008. Tourist arrivals and expenditures from Chinese tourists had brought more business opportunities to Taiwan. Besides, plenty of international chain hotels are under construction. That means world investors have faith in Taiwan’s hotel industry. Hence, an accurate tourism forecast is particularly crucial not only to governments and practitioners but also to investors’ resource allocation and decision making. Tourism demand forecast has been widely explored in recent years. The main objective of this study is therefore to obtain more accurate forecasts of Taiwan specific international hotel total arrivals by comparing ARIMA and VAR model, which are rarely employed in hotel industry. In this study, monthly data covered the periods from 2000/01 to 2010/12. The data period from 2000/01 to 2010/03 was used to build the forecasting model, while the remaining data was used to evaluate it. The data is collected form The Monthly Report on Tourism published by the Tourism Bureau of Taiwan. Explanatory variables included gross domestic product, consumer price index, exchange rate, and hotel characteristic variables. In order to evaluate of the proposed modeling performance, we use the mean absolute percentage error (MAPE) as evaluation. Results show that MAPE is lower than 20%, indicated model has good forecasting ability. Better performed forecasting model has more favorable benefits toward the resource scheduling, capacity planning in the management team of the international tourist hotel.

    摘要 II Abstract III 目錄 IV 表目錄 V 圖目錄 VI 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 8 第三節 研究流程 8 第四節 研究範圍與限制 9 第二章 文獻回顧 10 第一節 國際觀光旅館業之發展與市場概況 10 第二節 觀光需求預測理論及方法 19 第三章 研究方法 28 第一節 變數定義 28 第二節 研究對象 30 第三節 研究步驟 31 第四節 研究方法 33 第四章 實證結果與分析 44 第一節 六家五星級國際觀光旅館住宿資料 44 第二節 資料屬性檢定與模型建立 45 第三節 六家五星級國際觀光旅館住宿人數預測 72 第五章 結論與建議 78 第一節 結論 78 第二節 建議 79 參考文獻 81

    一、 中文部分
    王一芝 (2011,5月)。黃金十年來了!。遠見雜誌。299,172-223。

    王俊典 (2006)。國際觀光飯店之目標市場及定位策略之研究---以高雄國賓大飯店為例。未出版碩士論文,國立中山大學,高雄市。

    何如玉、林萬登 (2009,9月)。兩岸三地旅館產業經營績效與發展趨勢研析。發表於2009年海峽兩岸觀光、休閒暨餐旅研討會。高雄:國立高雄餐旅學院。

    吳勉勤 (2004)。旅館管理:理論與實務。台北市:華立圖書。

    高建文 (2001)。國際連鎖旅館暨華人旅館業者國際化策略之研究。未出版碩士論文,國立台灣大學,台北市。

    陳宛君、鍾宜陵,(2009),國人於台灣及國外地區觀光旅遊需求之研究,戶外遊憩研究,22(2),1-26。

    楊奕農 (2009)。時間序列分析:經濟與財務上之應用,台北:雙葉書廊。

    交通部 (2010)。交通部觀光局行政資訊系統。線上檢索日期2010年12月31日。網址:http://admin.taiwan.net.tw/indexc.asp

    交通部 (2010)。交通部觀光局觀光旅館業管理資訊系統。線上檢索日期2010年12月31日。網址:http://t-hotel.tbroc.gov.tw/index/index.asp

    二、英文部分
    Armstrong, J. S. & Collopy, F (1992). Error Measures for Generalizing About Forecasting Methods: Empirical Comparisons. International Journal of Forecasting, 8, 69-80.

    Choi, I. (1992). Effects of data aggregation on the power of tests for a unit root. Economics Letter, 40, 397-401.

    Cranage, D. (2003). Practical time series forecasting for the hospitality manager. International Journal of Contemporary Hospitality Management, 2, 86-93.

    De Mello, M. M. & Fortuna, N. (2005). Testing alternative dynamic systems for modeling tourism demand. Tourism Economics, 11(4), 517-537

    De Mello, M. M. & Nell, S. K. (2005). The forecasting ability of a cointegrated VAR system of the UK tourism demand for France, Spain and Portugal. Empirical Economics, 30, 277-308.

    Dickey, D.A. & Fuller, W.A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74, 427–431.

    Engle, R. F. & Granger, C. W. (1987). Co-integration and error correction: representation, estimation, and testing. Econometrica, 55, 251-276.

    Goh, C. & Law, R. (2002). Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. Tourism Management, 23, 499-510.

    Gu, Z. (2003). The Chinese lodging industry: problems and solutions. International Journal of Contemporary Hospitality Management, 15, 386-392.

    Hamliton, J. D. (1994). Time Series Analysis, New Jersey:Princeton University Press.

    Huang, J. H. & Min, C. H. (2002). Earthquake devastation and recovery in tourism: the Taiwan case. Tourism Management, 23, 145-154.

    Hwang, S. N. & Chang, T. Y. (2003). Using data envelopment analysis to measure hotel managerial efficiency change in Taiwan. Tourism Management, 24, 357-369.

    Koehler, B. A. & Murphree, S. E. (1988). A comparison of the Akaike and Schwarz criteria for selecting model order. Journal of the Royal Statistical Society, 37, 187-195.

    Kuo, H. I., Chen, C. C., Tseng, W. C., Ju, L. F. & Huang, B. W. (2008). Assessing impacts of SARS and Avian Flu on international tourism demand to Asia. Tourism Management, 29, 917-928.

    Li, G., Song, H., & Witt, S.F. (2005). Recent developments in econometric modeling and forecasting. Journal of Travel Research, 44, 82-99.

    Maghyerh, A. (2004). Oil price shocks and emerging stock markets: A generalized VAR approach. International Journal of Applied Econometrics and Quantitative Studies. 1, 27-40.

    Min, C. H. (2005). The effect of the SARS illness on tourism in Taiwan: an empirical study. International Journal of Management. 22, 497-506.

    Newbold, P. & Granger, C. W. J. (1974). Experience with forecasting univariate time series and the combination of forecasts. Journal of the Royal Statistics Society. 137, 131-165.

    Phillips, P. C. B. & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75, 335–346.

    Ramanathan, R. (2002). Introductory econometrics with applications. USA: Harcourt College Publishers.

    Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48, 1-48.

    Song, H. & Witt, S.F. (2006). Forecasting international tourist flows to Macau. Tourism Management, 3, 214-224.

    Song, H., & Li, G. (2008). Tourism demand modeling and forecasting – a review of recent research. Tourism Management, 29, 203-220.

    Song, H., Li, G., Witt, S.F. & Fei, B. (2010). Tourism demand modelling and forecasting: how should demand be measured? Tourism Economics, 1, 63-81.

    Song, H., Witt, S. F. & Jensen, T. C. (2003). Tourism forecasting: accuracy of alternative econometric models. International Journal of Forecasting, 19, 123-141.
    Song, H., Wong, K. F., & Chon, K. S. (2003). Modeling and forecasting the demand for Hong Kong tourism. International Journal of Hospitality Management, 22, 433-451.

    Vanegas, Sr. M. & Croes, R. R. (2000). Evaluation of demand US tourists to Aruba, Annuals of Tourism Research, 27(4), 946-963.

    Witt, S. F. & Witt A. C. (1995). Forecasting tourism demand: A review of empirical research. International Journal of Forecasting, 11, 447-475

    Witt, S. F., Song, H. & Wanhill, S. (2004). Forecasting tourism-generated employment: the case of Denmark. Tourism Economics, 10, 167-176.

    Wong, K. K. F., Song, H., & Chon, K. S. (2006). Bayesian models for tourism demand forecasting. Tourism Management, 27, 773-780.

    Wong, K. K. F., Song, H., Witt, S. F. & Wu, D. C. (2007). Tourism forecasting: To combine or not to combine? Tourism Management, 28, 1068-178.

    World Travel & Tourism Council (1990). Retrieved 10 August, 2010 from http://www.wttc.org/eng/Tourism_Research/Economic_Data_Search_Tool/

    QR CODE