簡易檢索 / 詳目顯示

研究生: 童敬霖
Tung, Ching-Lin
論文名稱: 以社群探勘、偏最小平方結構方程與多準則決策分析歸納影響中小企業導入網路儲存裝置之關鍵因素
Derivations of Factors Influencing the Adoption of Network Attached Storage by Social Media Mining, PLS-SEM and MCDM Methods
指導教授: 黃啟祐
Huang, Chi-Yo
口試委員: 羅乃維
Lo, Nai-Wei
何秀青
Ho, Hsiu-Ching
黃啟祐
Huang, Chi-Yo
口試日期: 2022/11/25
學位類別: 碩士
Master
系所名稱: 工業教育學系科技應用管理碩士在職專班
Department of Industrial Education_Continuing Education Master's Program of Technological Management
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 74
中文關鍵詞: 網路儲存裝置文字探勘偏最小平方結構方程模型多準則決策延伸型整合科技接受模式
英文關鍵詞: Networked Attached Storage, Text Mining, Partial Least Squares Structural Equation Modeling, Multiple Criteria Decision Making, Unified Theory of Acceptance and Use of Technology 2
研究方法: 主題分析社會網路分析
DOI URL: http://doi.org/10.6345/NTNU202205653
論文種類: 學術論文
相關次數: 點閱:173下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在大數據時代,儲存與備份資料能力,成為大部份企業有效運用數據資產的關鍵成功要素。網路儲存裝置(Networked Attached Storage,NAS)具備數據儲存之安全性、可擴展性與靈活性等特質,為可滿足中小企業數據儲存、備份與協作需求之最佳解決方案。雖然網路儲存裝置極為重要,然而,探討影響中小企業導入相關儲存裝置的研究極為有限。為了跨越此研究缺口,本論文擬透過社群媒體探勘與專家問卷,導入第二代整合科技接受模型(Unified Theory of Acceptance and Use of Technology 2,UTAUT 2),推衍影響中小企業導入網路儲存裝置之關鍵要素。
    本研究首先以文字探勘(Text Mining)技術擷取社群網站 Dcard,與網路儲存裝置有關之貼文,並以基於隱含狄利克雷分布 (Latent Dirichlet Allocation,LDA) 之主題模型分析(Topic Modeling),探勘貼文中蘊含之主題,其次,以階層式集群分析法(Hierarchical Cluster Analysis)將主題分群後,將各主題歸入第二代整合科技接受模式之構面,並以偏最小平方結構方程模型(Partial Least Squares Structural Equation Modeling,PLS-SEM)驗證之。本研究同時將邀集專家,以基於決策實驗室分析法(Decision Making Trial and Evaluation Laboratory,DEMATEL)之分析網路流程(Analytic Network Process,ANP),又稱 DANP,推衍影響中小企業導入網路儲存裝置的最關鍵因素,並比較社群網路探勘與專家意見法兩者結果之差異。
    依據社群網路探勘與結構方程模型驗證之結果,「行為意圖」和「價格價值」與中小企業導入網路儲存裝置的關連性最高。而以DANP彙整專家意見的結果,除了「行為意圖」和「價格價值」之外,「績效預期」亦將影響中小企業導入網路儲存裝置。
    本研究結果可提供中小企業,作為成功佈署網路儲存裝置之基礎,而整合社群媒體探勘、偏最小平方結構方程模型與多準則決策分析(Multiple Criteria Decision Making,MCDM)之研究架構,可作為探討相關領域影響導入新科技之分析方法。

    In the era of big data, the capabilities of storing data have emerged as a key success factor for the efficient manipulation of data. Networked Attached Storage (NAS) is a hardware solution to address the data storage, backup, and collaboration needs of small and medium-sized enterprises (SMEs) for enhancing the security, scalability, and flexibility of data storage. Despite the significance of NAS, little research investigated the dominant factors related to the adoptions of NAS. To cross the research gap, this thesis aims to derive the dominant factors based on the Unified Theory of Acceptance and Use of Technology 2 (UTAUT 2) from the mining of social media as well as the collection of experts’ opinions by using the Multiple Criteria Decision Making (MCDM) based methods.
    The research first extracted the posts related to network storage devices from the social networking site Dcard using Text Mining, and explored the topics embedded in the posts using a Topic Model technique based on the Latent Dirichlet Allocation (LDA). Then, the Hierarchical Cluster Analysis (HCA) was used to verify the structural equation model by using Partial Least Squares Structural Equation Modeling (PLS-SEM), after the topics were clustered according to the structure of the second-generation UTAUT 2 model. This research also invites experts to use the Analytic Network Process (ANP) based on the Decision Making Trial and Evaluation Laboratory (DEMATEL) to derive the most critical factor affecting the adoption of networked storage devices by SMEs.
    According to the results of social network mining and structural equation model verification, "behavioral intention" and "price value" have the highest correlation with the introduction of network storage devices by SMEs. In addition to "behavioral intention" and "price and value", "performance expectation" will also affect the introduction of networked storage devices by SMEs. The findings of this research provide SMEs with a foundation for the successful deployment of networked storage devices, and the incorporation of social media analysis, partial least square structural equation modeling, and the MCDM research framework can be used as an analytic technique to examine the effects of the introduction of new technologies in related fields.

    摘要 i Abstract iii Table of Contents v List of Tables vii List of Figures viii Chapter 1 Introduction 1 1.1 Research Backgrounds 1 1.2 Research Motivations 3 1.3 Research Purposes 5 1.4 Research Framework 6 1.5 Research Method 7 1.6 Thesis Limitation 9 1.7 Thesis Structure 9 Chapter 2 Literature Review 11 2.1 NAS 11 2.2 Text Mining 13 2.3 Topic Modeling 14 2.4 PLS-SEM 16 2.5 Technology Acceptance Model (TAM) 17 2.6 UTAUT 2 19 2.7 Social Media 21 Chapter 3 Research Method 23 3.1 Text Mining and Topic Modeling using LDA 24 3.2 PLS-SEM 26 3.3 Fitting Topics into Aspects of UTAUT 2 by Using Hierarchical Cluster Analysis 29 3.4 DEMATEL-based Analytic Network Process (DANP) 29 Chapter 4 Empirical Study 33 4.1 Data Mining and Pre-Processing from Social Media 34 4.2 Topic Extraction Using the LDA 36 4.3 Topic Clustering Using the Hierarchical Clustering Analysis 37 4.4 Constructing a Path Model using PLS-SEM 42 4.5 The Causal Relationships and Weight Derivations by the DANP 52 Chapter 5 Discussion 59 5.1 The Topics of Most Concerned for SMEs 59 5.2 Comparing the Key Factor between MCDM and DANP 60 5.3 Managerial Implications 62 5.4 Limitation and Suggestions for Future Research 64 Chapter 6 Conclusion 65 References 67

    Albalawi, R., Yeap, T. H., & Benyoucef, M. (2020). Using topic modeling methods for short-text data: A comparative analysis. Frontiers in Artificial Intelligence, 3, 42.
    Alfadda, H. A., & Mahdi, H. S. (2021). Measuring students’ use of zoom application in language course based on the technology acceptance model (TAM). Journal of Psycholinguistic Research, 50(4), 883-900.
    Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017). A brief survey of text mining: Classification, clustering and extraction techniques. arXiv preprint arXiv:1707.02919.
    Büyüközkan, G., & Güleryüz, S. (2016). An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey. International journal of production economics, 182, 435-448.
    Bai, X., Zhang, X., Li, K. X., Zhou, Y., & Yuen, K. F. (2021). Research topics and trends in the maritime transport: A structural topic model. Transport Policy, 102, 11-24. doi:https://doi.org/10.1016/j.tranpol.2020.12.013
    Baumer, E. P., Mimno, D., Guha, S., Quan, E., & Gay, G. K. (2017). Comparing grounded theory and topic modeling: Extreme divergence or unlikely convergence? Journal of the Association for Information Science and Technology, 68(6), 1397-1410.
    Berezina, K., Bilgihan, A., Cobanoglu, C., & Okumus, F. (2016). Understanding satisfied and dissatisfied hotel customers: text mining of online hotel reviews. Journal of Hospitality Marketing & Management, 25(1), 1-24.
    Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(1), 993-1022.
    Cepeda-Carrion, G., Cegarra-Navarro, J.-G., & Cillo, V. (2018). Tips to use partial least squares structural equation modelling (PLS-SEM) in knowledge management. Journal of Knowledge Management, 23(1), 67-89.
    Davis, F. D. (1986). A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results (Ph.D.), Massachusetts Institute of Technology, Cambridge, M.A.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
    Defni, S. S., Kom, M., & Cipto Prabowo, M. (2013). Perancangan dan implementasi data loss prevention system dengan menggunakan network attached storage. Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, 1(2), 44-50.
    Deibert, R. J. (2019). The road to digital unfreedom: Three painful truths about social media. Journal of Democracy, 30(1), 25-39.
    Delen, D., & Crossland, M. D. (2008). Seeding the survey and analysis of research literature with text mining. Expert Systems with Applications, 34(3), 1707-1720.
    Demoulin, N. T., & Coussement, K. (2020). Acceptance of text-mining systems: The signaling role of information quality. Information & management, 57(1), 103120.
    Dieng, A. B., Ruiz, F. J. R., & Blei, D. M. (2020). Topic Modeling in Embedding Spaces. Transactions of the Association for Computational Linguistics, 8, 439-453. doi:10.1162/tacl_a_00325
    Feldman, R., & Dagan, I. (1995). Knowledge Discovery in Textual Databases (KDT). Paper presented at the KDD.
    Fontela, E., & Gabus, A. (1976). The DEMATEL Observer. In. Geneva, Switzerland: Battelle Geneva Research Center.
    Gaikwad, S. V., Chaugule, A., & Patil, P. (2014). Text mining methods and techniques. International Journal of Computer Applications, 85(17).
    Hagen, L. (2018). Content analysis of e-petitions with topic modeling: How to train and evaluate LDA models? Information Processing & Management, 54(6), 1292-1307. doi:https://doi.org/10.1016/j.ipm.2018.05.006
    Hair, Sarstedt, & Ringle. (2019). Rethinking some of the rethinking of partial least squares. European Journal of Marketing, 53(4), 566-584.
    Hair, J. F., Astrachan, C. B., Moisescu, O. I., Radomir, L., Sarstedt, M., Vaithilingam, S., & Ringle, C. M. (2021). Executing and interpreting applications of PLS-SEM: Updates for family business researchers. Journal of Family Business Strategy, 12(3), 100392.
    Hair Jr, J. F., Howard, M. C., & Nitzl, C. (2020). Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of Business Research, 109, 101-110.
    Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). London, U.K.: Sage publications.
    Hair Jr, J. F., & Sarstedt, M. (2019). Factors versus composites: Guidelines for choosing the right structural equation modeling method. Project Management Journal, 50(6), 619-624.
    Hassani, H., Beneki, C., Unger, S., Mazinani, M. T., & Yeganegi, M. R. (2020). Text mining in big data analytics. Big Data and Cognitive Computing, 4(1), 1.
    Hoffman, M., Bach, F., & Blei, D. (2010). Online learning for latent dirichlet allocation. Advances in Neural Information Processing Systems, 23.
    Huang, C.-Y., Yang, C.-L., & Hsiao, Y.-H. (2021). A novel framework for mining social media data based on text mining, topic modeling, random forest, and DANP methods. Mathematics, 9(17), 2041.
    Hwang, B.-N., Huang, C.-Y., & Yang, C.-L. (2016). Determinants and their causal relationships affecting the adoption of cloud computing in science and technology institutions. Innovation, 18(2), 164-190. doi:10.1080/14479338.2016.1203729
    Inzalkar, S., & Sharma, J. (2015). A survey on text mining-techniques and application. International Journal of Research In Science & Engineering, 24, 1-14.
    Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications, 78(11), 15169-15211.
    Johnson, R. A., & Wichern, D. W. (1992). Applied Multivariate Statistical Analysis. Upper Saddle River, N.J.: Prentice Hall.
    Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business horizons, 53(1), 59-68.
    Kobayashi, V. B., Mol, S. T., Berkers, H. A., Kismihók, G., & Den Hartog, D. N. (2018). Text mining in organizational research. Organizational research methods, 21(3), 733-765.
    Kolbe, R. H., & Burnett, M. S. (1991). Content-analysis research: An examination of applications with directives for improving research reliability and objectivity. Journal of Consumer Research, 18(2), 243-250.
    Kumar, B. S., & Ravi, V. (2016). A survey of the applications of text mining in financial domain. Knowledge-Based Systems, 114, 128-147. doi:https://doi.org/10.1016/j.knosys.2016.10.003
    Kumar, M. (2021). Network-Attached Storage: Data Storage Applications. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(12), 2385-2396.
    Kumar, M. G., Ayudh, N., Benjamin, P., & Sharat, P. D. (2021). Network-attached storage: data storage applications. Turkish Journal of Computer and Mathematics Education, 12(12), 2385-2396.
    Lai, A. S.-Y., & Ma, A. M.-S. (2017). Designing Network-attached storage architecture for small and medium enterprise applications. In D. S. Park, H. C. Chao, Y. S. Jeong, & J. J. Park (Eds.), Advances in Computer Science and Ubiquitous Computing (pp. 274-279). New York, N.Y.: Springer.
    Lai, I. K. (2015). Traveler acceptance of an app-based mobile tour guide. Journal of Hospitality & Tourism Research, 39(3), 401-432.
    Lanka, A., & Gargeyas, A. (2018). Remotely accessible, low power network attached storage device. Paper presented at the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India.
    Liu, Q., Wang, G., & Wu, J. (2012). Secure and privacy preserving keyword searching for cloud storage services. Journal of Network and Computer Applications, 35(3), 927-933. doi:https://doi.org/10.1016/j.jnca.2011.03.010
    Mason, A. N., Narcum, J., & Mason, K. (2021). Social media marketing gains importance after Covid-19. Cogent Business & Management, 8(1), 1870797.
    Memon, M. A., Ramayah, T., Cheah, J., Ting, H., Chuah, F., & Cham, T. (2021). PLS-SEM statistical programs: a review. Journal of Applied Structural Equation Modeling, 5(1), 1-14.
    Mittal, S., Khan, M. A., Romero, D., & Wuest, T. (2018). A critical review of smart manufacturing & Industry 4.0 maturity models: Implications for small and medium-sized enterprises (SMEs). Journal of Manufacturing Systems, 49, 194-214.
    Mun, Y. Y., Jackson, J. D., Park, J. S., & Probst, J. C. (2006). Understanding information technology acceptance by individual professionals: Toward an integrative view. Information & management, 43(3), 350-363.
    Palau-Saumell, R., Forgas-Coll, S., Sánchez-García, J., & Robres, E. (2019). User acceptance of mobile apps for restaurants: An expanded and extended UTAUT-2. Sustainability, 11(4), 1210.
    Powell, T. C., & Dent‐Micallef, A. (1997). Information technology as competitive advantage: The role of human, business, and technology resources. Strategic Management Journal, 18(5), 375-405.
    Quobyte. (2022). The Battle is On: SAN vs. NAS vs. Object.
    Ray, A., & Bala, P. K. (2021). User generated content for exploring factors affecting intention to use travel and food delivery services. International Journal of Hospitality Management, 92, 102730.
    Reinsel, D., Gantz, J., & Rydning, J. (2018). The Digitization of the World from Edge to Core. Framingham, M.A.: International Data Corporation.
    Rigdon, E. E. (2016). Choosing PLS path modeling as analytical method in European management research: A realist perspective. European Management Journal, 34(6), 598-605.
    Saaty, T. L. (1989). Decision making, scaling, and number crunching. Decision Sciences, 20(2), 404-409.
    Saaty, T. L. (2005). Theory and Applications of the Analytic Network Process: Decision Making With Benefits, Opportunities, Costs, and Risks. Pittsburgh, P.A.: RWS Publications.
    Saga, R., & Kunimoto, R. (2016). LDA-based path model construction process for structure equation modeling. Artificial Life and Robotics, 21(2), 155-159.
    Sarstedt, M., Ringle, C. M., & Hair, J. F. (2021). Partial least squares structural equation modeling. In Handbook of Market Research (pp. 587-632). New York, N.Y.: Springer.
    Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13-35.
    Shiau, S. J., Huang, C.-Y., Yang, C.-L., & Juang, J.-N. (2018). A derivation of factors influencing the innovation diffusion of the OpenStreetMap in STEM education. Sustainability, 10(10), 3447.
    Shiau, W. L., & Chau, P. Y. (2016). Understanding behavioral intention to use a cloud computing classroom: A multiple model comparison approach. Information Management, 53(3), 355-365.
    Statista Research Department. (2022). Big data analytics market revenue worldwide in 2019 and 2025. Statista Inc. New York, N.Y. Retrieved from https://www.statista.com/statistics/947745/worldwide-total-data-market-revenue/
    Talib, R., Hanif, M. K., Ayesha, S., & Fatima, F. (2016). Text mining: techniques, applications and issues. International Journal of Advanced Computer Science and Applications, 7(11), 414-418.
    Tan, A.-H. (1999). Text mining: The state of the art and the challenges. Paper presented at the Proceedings of the pakdd 1999 workshop on knowledge disocovery from advanced databases, Beijing, China.
    TechRadar Pro. (2022). Why bringing processing to storage devices could be the answer to the data dilemma. Retrieved from https://www.techradar.com/features/why-bringing-processing-to-storage-devices-could-be-the-answer-to-the-data-dilemma
    Tong, Z., & Zhang, H. (2016). A text mining research based on LDA topic modelling. Paper presented at the International Conference on Computer Science, Engineering and Information Technology, Sydney, Australia.
    Trumbach, C. C., Payne, D., & Kongthon, A. (2006). Technology mining for small firms: Knowledge prospecting for competitive advantage. Technological Forecasting and Social Change, 73(8), 937-949.
    Tufekci, Z. (2015). Algorithms in our midst: Information, power and choice when software is everywhere. Paper presented at the Proceedings of the 18th acm conference on computer supported cooperative work & social computing, New York, NY,.
    Tzeng, G. H., & Huang, J. J. (2011). Multiple Attribute Decision Making: Methods and Applications. Boca Raton, Florida: CRC Press.
    Vassakis, K., Petrakis, E., & Kopanakis, I. (2018). Big data analytics: applications, prospects and challenges. In G. Skourletopoulos, G. Mastorakis, C. X. Mavromoustakis, C. Dobre, & E. Pallis (Eds.), Mobile Big Data - A Roadmap from Models to Technologies (pp. 3-20). Cham, Switzerland: Springer International Publishing AG.
    Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27, 425-478.
    Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178.
    Walczuch, R., Lemmink, J., & Streukens, S. (2007). The effect of service employees’ technology readiness on technology acceptance. Information & management, 44(2), 206-215.
    Wang, N., Fu, J., Bhargava, B. K., & Zeng, J. (2018). Efficient retrieval over documents encrypted by attributes in cloud computing. IEEE Transactions on Information Forensics and Security, 13(10), 2653-2667.
    Wang, Z., Wang, N., Su, X., & Ge, S. (2020). An empirical study on business analytics affordances enhancing the management of cloud computing data security. International Journal of Information Management, 50, 387-394.
    Wold, H. (1975). Soft modelling by latent variables: the non-linear iterative partial least squares (NIPALS) approach. Journal of Applied Probability, 12(1), 117-142.
    Zafarani, R., Abbasi, M. A., & Liu, H. (2014). Social Media Mining: An Introduction. Cambridge, U.K.: Cambridge University Press.
    Zeitzoff, T. (2017). How social media is changing conflict. Journal of Conflict Resolution, 61(9), 1970-1991.
    Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8), 1738-1762.
    Zhou, Y., Wang, X., & Yuen, K. F. (2021). Sustainability disclosure for container shipping: A text-mining approach. Transport Policy, 110, 465-477.

    無法下載圖示 本全文未授權公開
    QR CODE