研究生: |
劉康翔 Liu, Kang-Hsiang |
---|---|
論文名稱: |
整合式多功無機鈣鈦礦發光電化學元件與電阻式記憶體製作與應用 Integration of multifunction all inorganic perovskite-based Light emitting electrochemical cells (LEC) and Resistive random access memory (RRAM) for the production and application |
指導教授: |
李亞儒
Lee, Ya-Ju |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 全無機鈣鈦礦 、電阻式記憶體 、發光電化學元件 |
英文關鍵詞: | perovskite, Resistive random access memory, Light-emitting electrochemical cell |
DOI URL: | http://doi.org/10.6345/NTNU202001341 |
論文種類: | 學術論文 |
相關次數: | 點閱:133 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全無機鈣鈦礦材料因其卓越的功能性和穩定性而被認為是各種電子應用的優異半導體材料。本論文使用全無機鈣鈦礦量子點 (CsPbBr3) 並選用四層簡易的結構 (Ag/Poly(methyl methacrylate) /CsPbBr3/indium tin oxide) 來達到同時具備發光電化學元件 (Light-emitting electrochemical cell, LEC) 元件發光特性與電阻式記憶體 (Resistive random access memory, RRAM) 記憶特性的新元件。當 Ag 電極上施加負偏壓時,會以 LEC 發光特性作用;若在 Ag 電極上施加正偏壓時,則會以 RRAM 電阻轉換特性作用。
接著對此元件以氧化銦錫做兩個串連,整合出兩個視為一組的新元件,當施加正偏壓時,一側做記憶體寫入另一側做二極體發光;若施加負偏壓時,兩個元件作交換原本做記憶體寫入的元件轉成二極體發光,二極體發光轉成記憶體寫入,來達到比原本傳統電阻式記憶體以電流判讀多一種發光特性去判讀記憶體的方式。最後分析串連後元件的傳導機制與能階示意圖。
All-inorganic perovskite materials are considered to be excellent semiconductor materials for various electronic applications due to their excellent functionality and stability. This paper uses all-inorganic perovskite quantum dots (CsPbBr3) and selects a four-layer simple structure (Ag/Poly(methyl methacrylate) /CsPbBr3/indium tin oxide) to achieve both the luminescence characteristics of the Light-emitting electrochemical cell (LEC) and the resistive random access memory (RRAM) is a new component with memory characteristics. When a negative bias is applied to the Ag electrode, it will act as the LEC light-emitting characteristic; if a positive bias is applied to the Ag electrode, it will act as the RRAM resistance conversion characteristic.
Then use indium tin oxide to make two series connections for this device to integrate two new devices as a group. When a positive bias is applied, one side is used for memory writing and the other side is used for diode light emission; When a negative bias is applied, the two elements are exchanged. The element originally used for memory writing turns into a diode to emit light, and the diode emits light to turn into memory for writing, which is more current than the original traditional resistive memory. A way of luminous characteristics to judge memory. Finally, the conduction mechanism and energy level diagrams of the connected devices are analyzed.
[1] Q. Pei, G. Yu, C. Zhang, Y. Yang, and A. J. J. S. Heeger, "Polymer light-emitting electrochemical cells," vol. 269, no. 5227, pp. 1086-1088, 1995.
[2] B. R. Sutherland and E. H. J. N. P. Sargent, "Perovskite photonic sources," vol. 10, no. 5, p. 295, 2016.
[3] G. E. Eperon et al., "Inorganic caesium lead iodide perovskite solar cells," vol. 3, no. 39, pp. 19688-19695, 2015.
[4] A. Swarnkar et al., "Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics," vol. 354, no. 6308, pp. 92-95, 2016.
[5] C. Sun et al., "Efficient and stable white LEDs with silica‐coated inorganic perovskite quantum dots," vol. 28, no. 45, pp. 10088-10094, 2016.
[6] J. Li et al., "50‐Fold EQE improvement up to 6.27% of solution‐processed all‐inorganic perovskite CsPbBr3 QLEDs via surface ligand density control," vol. 29, no. 5, p. 1603885, 2017.
[7] Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, and H. J. N. l. Sun, "Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals," vol. 16, no. 1, pp. 448-453, 2016.
[8] Y. Wang, X. Li, V. Nalla, H. Zeng, and H. J. A. F. M. Sun, "Solution‐processed low threshold vertical cavity surface emitting lasers from all‐inorganic perovskite nanocrystals," vol. 27, no. 13, p. 1605088, 2017.
[9] S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang, and D. J. C. C. Pan, "Room-temperature and gram-scale synthesis of CsPbX 3 (X= Cl, Br, I) perovskite nanocrystals with 50–85% photoluminescence quantum yields," vol. 52, no. 45, pp. 7265-7268, 2016.
[10] J. D. Slinker et al., "Direct measurement of the electric-field distribution in a light-emitting electrochemical cell," vol. 6, no. 11, pp. 894-899, 2007.
[11] M. M. Richter, F.-R. F. Fan, F. Klavetter, A. J. Heeger, and A. J. J. C. p. l. Bard, "Electrochemistry and electrogenerated chemiluminescence of films of the conjugated polymer 4-methoxy-(2-ethylhexoxyl)-2, 5-polyphenylenevinylene," vol. 226, no. 1-2, pp. 115-120, 1994.
[12] S. van Reenen, P. Matyba, A. Dzwilewski, R. A. Janssen, L. Edman, and M. J. J. o. t. A. C. S. Kemerink, "A unifying model for the operation of light-emitting electrochemical cells," vol. 132, no. 39, pp. 13776-13781, 2010.
[13] J. DeMello, N. Tessler, S. Graham, and R. J. P. R. B. Friend, "Ionic space-charge effects in polymer light-emitting diodes," vol. 57, no. 20, p. 12951, 1998.
[14] 陳柏賢 and 蘇海清, "磷光敏化白光電化學元件," 2011.
[15] P. J. J. o. P. D. A. P. Murgatroyd, "Theory of space-charge-limited current enhanced by Frenkel effect," vol. 3, no. 2, p. 151, 1970.
[16] J. J. P. R. Frenkel, "On pre-breakdown phenomena in insulators and electronic semi-conductors," vol. 54, no. 8, p. 647, 1938.
[17] M. A. Lampert and P. Mark, "Current injection in solids," 1970.
[18] T. J. J. o. A. P. Hickmott, "Low‐frequency negative resistance in thin anodic oxide films," vol. 33, no. 9, pp. 2669-2682, 1962.
[19] R. Waser, R. Dittmann, G. Staikov, and K. J. A. m. Szot, "Redox‐based resistive switching memories–nanoionic mechanisms, prospects, and challenges," vol. 21, no. 25-26, pp. 2632-2663, 2009.
[20] M. D. Licker, McGraw-Hill concise encyclopedia of science & technology. McGraw-Hill Professional Publishing, 2005.
[21] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," in Nanoscience And Technology: A Collection of Reviews from Nature Journals: World Scientific, 2010, pp. 158-165.
[22] K. J. J. o. P. D. A. P. Ellmer, "Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties," vol. 33, no. 4, p. R17, 2000.
[23] J. L. Vossen, W. Kern, and W. Kern, Thin film processes II. Gulf Professional Publishing, 1991.
[24] X. Li et al., "CsPbX3 quantum dots for lighting and displays: room‐temperature synthesis, photoluminescence superiorities, underlying origins and white light‐emitting diodes," vol. 26, no. 15, pp. 2435-2445, 2016.
[25] L. Protesescu et al., "Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut," vol. 15, no. 6, pp. 3692-3696, 2015.
[26] T. Sakuma, M. Mutou, K. Ohki, M. Arai, H. Takahashi, and Y. J. S. s. i. Ishii, "Low-energy excitation in CsPbX3 (X= Cl, Br)," vol. 154, pp. 237-242, 2002.
[27] I. Y. Zaitseva, I. Kovaleva, and V. J. R. j. o. i. c. Fedorov, "HgBr 2-CsPbBr 3 and CsHgBr 3-PbBr 2 Joins of the HgBr 2-PbBr 2-CsBr System," vol. 51, no. 4, pp. 619-623, 2006.
[28] M. Rodová, J. Brožek, K. Knížek, K. J. J. o. t. a. Nitsch, and calorimetry, "Phase transitions in ternary caesium lead bromide," vol. 71, no. 2, pp. 667-673, 2003.