簡易檢索 / 詳目顯示

研究生: 蔡任圃
論文名稱: 單眼與複眼在蟑螂運動行為上的調控功能
指導教授: 林金盾
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 148
中文關鍵詞: 單眼複眼蟑螂運動行為附肢EMG
論文種類: 學術論文
相關次數: 點閱:229下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 美洲蟑螂(Periplaneta americana)同時具有單眼與複眼,在「生物經濟原則」的觀點上,其生理角色必定有所不同。本研究利用攝影連續紀錄蟑螂在光區與暗區的時間比率,比較單眼與複眼在光趨向行為(phototaxis)中的生理角色。此外,利用攝影配合電腦影像分析,記錄並測量蟑螂附肢的運動行為與個體的行進速度,探討運動行為的光活動(photokinesis)特性,以比較單眼與複眼在調節運動行為上的生理角色。
    在光趨向行為方面,證明蟑螂具有避光行為,而單眼與複眼對避光反應具有相同程度的調節能力。當單眼與複眼同時照光時,對於光趨向行為具加成的作用。在光活動行為方面,觸角、步足的運動行為與個體的行進速度具有光活動行為的特性;照光適應與刺激尾毛引發逃亡,對附肢運動與個體行進速度具有一樣的效應,但照光適應的調節作用較逃亡時運動狀態的改變微弱。此外,在觸角的擺動角度、步足的步行頻率與個體的行進速度等參數上,照光與刺激尾毛同時作用時,具有加成的效果。
    在附肢運動行為與附肢EMG階層的參數上,單眼與複眼皆具調節能力,並且同時具有角色重疊與分工合作的特性。蟑螂的視覺訊息對運動行為的調控,可因照光處理的方式不同而有所改變。在檢視單眼與複眼對各項參數的調節作用後,發現在蟑螂逃亡時複眼調節附肢運動的程度(如跨步距離),進而影響其他參數的表現(如伸腳跨步速度與平均行進速度);而單眼與複眼在停止逃亡後,能調節附肢運動的時程(如觸角的擺動時距、行走期的比率),進而影響其他參數的表現(如觸角內擺的角速度、平均的行進速度);其中單眼對於附肢運動的調節,在照光適應或照光刺激作用一致,而複眼則較具變化。
    比較單眼與複眼對各項附肢運動行為參數的調節作用後,可發現單眼與複眼對蟑螂運動行為的調節角色不盡相同,而具有複雜的互動關係。兩種視覺器官在不同的參數上具有不同的合作調節型態,並且可因視覺訊息輸入的時間與強度、個體的運動狀態與其他感覺輸入(如臉部的觸覺刺激)等因子的影響,而對運動行為具有不同的調節作用。

    Cockroaches, Periplaneta americana, are equipped with ocelli and compound eyes. According to the principles of biological economy, the physiological role of ocelli and compound eyes should be different. Using computer-based image analysis the present study has compared the functional differences between ocelli and compound eyes by determining the ratio of light-avoiding reaction for phototaxis and by measuring the movement of antennae and legs, the velocity of insect locomotion for photokinesis.
    Results from the phototaxic experiments showed that American cockroach behave with light-avoiding responses and the light-avoiding response is regulated by both ocelli and compound eyes. The effects of simultaneous illumination to ocelli and compound eyes on the light-avoiding response are synergetic. In photokinetic experiments, it is proved that both the movement of antennae and legs, and the velocity of insect locomotion conformed to the photokinetic characteristics. The effects of light-adaptation and cerci-stimulation on the movement of antennae and legs, and the velocity of insect locomotion are in a similar manner, however, the effects of the former is weaker than those of the latter. In addition, the effects of the simultaneous light-adaptation and cerci-stimulation on the swing degree of antennae, the stepping frequency of legs and the velocity of insect locomotion are synergetic.
    Upon the regulation of the movement of antennae and legs, and the EMG recorded from antennae and legs during movement, ocelli and compound eyes perform simultaneously in the role of visual organs, but differently in some parameters. The regulatory effects of visual signals on the movement of antennae and legs depends on the different intensity of illumination. During insects’ escape induced by cerci-stimulation, the strength of legs’ movement(e.g. stepping distance) is regulated by the visual signals from compound eyes, then the other parameters (e.g. stepping velocity of retraction and the mean velocity of insect locomotion) was followed by the effects of stimulating compound eyes. After ceasing cerci-stimulation, the duration of movement of antennae and legs (e.g. swing duration of antennae and ratio of walking phase) is regulated by the visual signals from both ocelli and compound eyes, then the other parameters of movement (e.g. inward swing angular velocity of antennae and the mean velocity of insect locomotion) was followed by the effects of stimulating both ocelli and compound eyes. However, the effects of ocelli-illumination only on the parameters of movement during light-adaptation and light-stimulation are more consistent than those of compound eyes-illumination only.
    In conclusion, results evidence that the regulatory functions of ocelli and compound eyes on the locomotion behavior are different. There are a complex interaction between ocelli and compound eyes with different co-regulation type among parameters. Furthermore, their regulatory effects vary according to the intensity and the timing of visual signals input, the locomotion condition of insect and whether other sensory inputs (e.g. tactile sensation from insect’s face) or not, they showed differently functional regulations.

    中文摘要………………………………………………… i 英文摘要………………………………………………… ii 第一章 緒論…………………………………………… 1 一、視覺與昆蟲的行為……………………………………………………1 二、單眼與複眼的生理角色………………………………………………2 三、昆蟲行為的偵測技術…………………………………………………4 四、美洲蟑螂的逃亡行為…………………………………………………4 五、昆蟲的觸角運動與功能………………………………………………5 六、本論文的研究架構……………………………………………………5 第二章 材料與方法……………………………………… 6 研究材料………………………………………………………………… 6 研究方法………………………………………………………………… 6 壹、蟑螂光趨向行為的特性………………………………………… 6 一、實驗裝置…………………………………………………… 6 二、實驗動物分組……………………………………………… 7 三、實驗記錄…………………………………………………… 7 貳、蟑螂照光適應的光活動特性…………………………………… 7 一、實驗裝置…………………………………………………… 7 二、實驗動物分組……………………………………………… 8 三、測量的參數………………………………………………… 8 參、單眼與複眼在蟑螂光活動行為上的調節作用………………… 9 一、實驗裝置…………………………………………………… 9 二、實驗動物分組……………………………………………… 9 (一)、照光適應……………………………………………. 9 (二)、照光刺激…………………………………………… 10 肆、單眼與複眼對蟑螂附肢(觸角與步足)肌肉活動的調節作用…10 一、實驗裝置……………………………………………………10 二、觸角肌肉活動記錄…………………………………………10 三、步足肌肉活動記錄…………………………………………11 四、EMG圖形分析…………………………………………… 12 第三章 結果………………………………………………13 壹、蟑螂光趨向行為的特性……………………………………………13 一、單眼與複眼在蟑螂負光趨向行為上的調節作用……………13 二、在不同時段單眼與複眼在蟑螂負光趨向行為上的調節作用.13 三、單眼與複眼在蟑螂負光趨向行為中,對逃離光區反應的調節作用…………………………………………………………… 13 四、單眼與複眼對蟑螂負光趨向行為潛伏期的調節作用……… 14 五、在不同時段單眼與複眼對負光趨向行為潛伏期的調節作用.14 貳、蟑螂照光適應的光活動特性……………………………………… 14 一、照光適應對觸角運動的影響………………………………… 15 二、照光適應對步足運動的影響………………………………… 16 三、照光適應對蟑螂行進運動的調節作用……………………… 18 四、照光適應對蟑螂各項參數調節作用的比較………………… 19 參、單眼與複眼在蟑螂光活動行為上的調節作用…………………… 19 一、黏附導光管對運動行為的影響……………………………… 20 二、單眼與複眼照光適應對運動行為的調節作用……………… 20 (一)、觸角運動…………………………………………………20 (二)、步足運動…………………………………………………21 (三)、行進運動…………………………………………………22 (四)、各項參數的比較…………………………………………24 三、逃亡時照光刺激對運動行為的影響………………………… 24 (一)、觸角運動…………………………………………………24 (二)、步足運動…………………………………………………25 (三)、行進運動…………………………………………………26 (四)、各項參數的比較…………………………………………27 四、照光適應與照光刺激對運動行為調控的比較……………… 28 肆、單眼與複眼對附肢(觸角與步足)肌肉活性的調節作用……………30 一、黏附導光管對附肢EMG潛伏期的影響………………………30 二、照光適應對逃亡期間附肢EMG的影響………………………31 (一)、潛伏期……………………………………………………31 (二)、EMG頻率……………………………………………… 32 (三)、EMG振幅……………………………………………… 32 (四)、EMG電活性…………………………………………… 32 (五)、各項參數的比較…………………………………………33 三、逃亡期間照光刺激對附肢EMG的影響………………………33 (一)、EMG頻率……………………………………………… 33 (二)、EMG振幅……………………………………………… 34 (三)、EMG電活性…………………………………………… 34 (四)、各項參數的比較…………………………………………35 四、照光適應與照光刺激對附肢EMG調控的比較………………35 第四章 討論………………………………………………37 壹、昆蟲行為的偵測技術……………………………………………37 貳、單眼與複眼在蟑螂光趨向行為的角色……………………………38 參、單眼與複眼在蟑螂光活動行為的角色……………………………40 一、蟑螂觸角運動的光活動特性…………………………………40 二、蟑螂步足運動與行進速度的光活動特性……………………41 肆、單眼與複眼的差異及其生理功能…………………………………42 一、單眼與複眼在結構上的差異…………………………………42 二、複眼訊息輸入的神經傳遞……………………………………42 三、單眼訊息輸入的神經傳遞……………………………………43 四、單眼與複眼的生理功能………………………………………44 伍、本研究與前人研究結果之比較………………………………46 第五章 結論………………………………………………49 第六章 參考文獻…………………………………………52 第七章 圖表與說明………………………………………62 第八章 附錄……………………………………………. 143 附錄一:個體行進速度校正的式子推導………………………………143 附錄二:「蟑螂照光適應的光活動特性」、「單眼與複眼在蟑螂光活動行為上的調節作用」與「單眼與複眼對附肢(觸角與步足)肌肉活性的調節作用」實驗設計中照光強度實測值………………147

    Ali, M. A. and Klyne, M. A. 1985. Vision in vertebrates. Plenum Press. Pp. 272.
    Baba, Y. 2000. New methods of dye application for staining motor neurons in an insect. J. Neurosci. Methods 98: 165-169.
    Bartos, M and Honegger, H. W. 1997. Impact of motor activity and antennal mechanosensory input on the intensity of protolin-like immunotractivity in antennal motoneurons of crickets (Gryllus bimaculatus). J. Comp. Physiol. 181: 59-70.
    Bauer, C. K. and Gewecke, M. 1991. Motorneural control of antennal muscles in Locusta migratoria. J. Insect Physiol. 37: 551-562.
    Bauer, T and Kredler, M. 1993. Morphology of the compound eyes as an indicator of life-style in carabid beetles. Can. J. Zool. 71: 799-810.
    Belanger, J. H. and Trimmer, B. A. 2000. Combined kinematic and electromyographic analyses of proleg function during crawling by caterpillar Manduca sexta. J. Comp. Physiol. 186: 1031-1039.
    Boeckh, J., Ernst, K. D., Sass, H. and Waldow, U. 1984. Anatomical and physiological characteristics of individual neurons in the central antennal pathway of insect. J. Insect Physiol. 30: 15-26.
    Boedan, E. and Wyse, G. A. 2000. Temporally patterned activity recorded from mandibular nerves of the isolated subesophageal ganglion of Manduca. J. Insect Physiol. 46: 709-719.
    Burrows, M. and Hoyle, G. 1972. Neural mechanisms underlying behavior in the locust Schistocerca gregaria. Ⅲ. Topography of limb motorneurons in the metathoracic ganglion. J. Neurobiol. 4: 167-186.
    Burrows, M. and Rowell, C. H. F. 1973. Connections between descending visual interneurones and metathoracic motoneurons in the locust. J. Comp. Physiol. 85: 221-234.
    Butler, R. 1973a. The anatomy of the compound eye of Periplaneta americana L. 1. General features. J. Comp. Physiol. 83: 223-238.
    Butler, R. 1973b. The anatomy of the compound eye of Periplaneta americana L. 2. Fine structure. J. Comp. Physiol. 83: 239-262.
    Camhi, J. M. 1993. Neural mechanisms of behavior. Current Opin. Neurobiol. 3: 1011-1019.
    Camhi, J. M. and Johnson, E. N. 1999. High-frequency steering maneuvers mediated by tactile cues: Antennal wall-following in the cockroach. J. Exp. Biol. 202: 631-643.
    Camhi, J. M. and Levy, A. 1989. Th code for stimulus direction in a cell assembly in the cockroach. J. Comp. Physiol. 165: 83-97.
    Camhi, J. M. and Nolen, T. G. 1981. Properties of the escape system of cockroaches during walking. J. Comp. Physiol. 142: 339-346.
    Camhi, J. M. and Tom, W. 1978. The escape behavior of the cockroach Periplaneta americana. I. Turning response to wind puffs. J. Comp. Physiol. 128: 193-201.
    Camhi, J. M., Tom, W. and Volman, S. 1978. The escape behavior of the cockroach Periplaneta americana. Ⅱ. Detection of neural predators by air displacement. J. Comp. Physiol. 128: 203-212
    Carbonell, C. S. 1947. The thoracic muscles of the cockroach Periplaneta americana (L). Smithson. Misc. Collns. 107: 1-23.
    Catton, W. T. 1998. A test of the visual acuity of the locust eye. J. Insect Physiol. 44: 1145-1148.
    Comer, C. M. and Dowd, J. P. 1987. Escape turning behavior of the cockroach. Changes in directionality induced by unilateral lesions of the abdominal nervous system. J. Comp. Physiol. 160: 571-583.
    Comer, C. M., Mara, E. Murphy, K. A. Getman, M. and Mungy, M. C. 1994. Multisensory control of escape in the cockroach Periplaneta americana. Ⅱ. Patterns of touch-evoked behavior. J. Comp. Physiol. 174: 13-26.
    Cornwell, P. B. 1955. The functions of the ocelli of Calliphora (Diptera) and Locusta (Orthoptera). J. Exp. Biol. 32: 217-237.
    Delcomyn, F. 1971. The locomotion of the cockroach Periplaneta americana. J. Exp. Biol. 54: 443-452.
    Delcomyn, F. 1973. Motor activity during walking in the cockroach Periplaneta americana. I. Free walking. J. Exp. Biol. 59: 629-642
    Eaton, J. L., Tignor, K. R. and Holtzman, G. I. 1983. Role of moth ocelli in timing flight initiation at dusk. Physiol. Entomol. 8: 371-375.
    Erber, J. and Kloppenburg, P. 1995. The modulatory effects of serotonin and octopamine in the visual system of the honey bee (Apis mellifera L.). I. Behavioral analysis of the motion-sensitive antennal reflex. J. Comp. Physiol. 176: 111-118.
    Erber, J. and Schildberger, K. 1980. Conditioning of an antennal reflex to visual stimuli in bees (Apis mellifera L.) J. Comp. Physiol. 135: 217-225.
    Erber, J., Kloppenburg, P. and Scheidler, A. 1993a. Neuromodulation by serotonin and octopamine in the honeybee: behaviour, neuroanatomy and electrophysiology. Experientia. 49: 1073-1083.
    Erber, J., Pribbenow, B., Bauer, A. and Kloppenburg, P. 1993b. Antennal reflexes in the honeybee: tools for studying the neurous system. Apidology 24: 283-296.
    Erber, J., Pribbenow, B., Grandy, K. and Kierzek, S. 1997. Tactile motor learning in the antennal system of the honeybee (Apis mellifera L.). J. Comp. Physiol. 181: 355-365.
    Ewing, A. W. and Manning, A. 1966. Some aspects of the efferent control of walking in three cockroach species. J. Insect Physiol. 12: 1115-1118.
    Ferenz, H. J. 1975. Photoperiodic and hormonal control of reproduction in male beetles, Pterostichus nigrita. J. Insect Physiol. 21: 331-341
    Flores, G. B. and Lazzari, C. R. 1996. The role of the antennae in Triatoma infestans: Orientation towards thermal sources. J. Insect Physiol. 42: 433-440.
    Fourtner, C. R. 1978. The Ultrastructure of the metathoracic femoral extensors of the cockroach, Periplaneta americana. J. Morph. 156: 127-140.
    Frantaevich, L. and Cruse, H. 1997. The stick insect, Obrimus asperrimus (Phasmida, Bacillidae) walking on different surfaces. J. Insect Physiol. 43: 447-455.
    Full, R. J. and Tu, M. S. 1991. Mechanics of a rapid running insect: two-, four- and six-legged locomotion. J. Exp. Biol. 156: 215-231.
    Gnatzy, W. and Kämper, G. 1990. Digger wasp against crickets. Ⅱ. An airborne signal produced by a running predator. J. Comp. Physiol. 167: 551-556.
    Goodman, L. J. 1970. The structure and function of the insect dorsal ocellus. Adv. Insect Physiol. 7: 97-195.
    Gras, H. and Bartels, A. 1999. Effects of spontaneous locomotion on the cricket’s walking response to a wind stimulus. Naturwissenschaften 86: 242-246.
    Gras, H., Hörner, M. and Schurmann, F. W. 1994. A comparison of spontaneous and wind-evoked running modes in crickets and cockroaches. J. Insect Physiol. 40: 373-384.
    Guy, R, G., Goodman, L. J. and Mobbs, P. G. 1979. Visual interneurons in the bee brain: Synaptic organization and transmission by graded potentials. J. Comp. Physiol. 134: 253-264.
    Hamasaka, Y., Watari, Y., Arai, T., Numata, H. and Shiga, S. 2001. Retinal and extraretinal pathways for entrainment of the circadian activity rhythm in the blow fly, Protophormia terraenovae. J. Insect Physiol. 47: 867-875.
    Hedwig, B. 2000. A highly sensitive opto-electronic system for the measurement of movements. J. Neurosci. Methods 100: 165-171.
    Hertel, H. and Maronde, U. 1987. The physiology and morphology of centrally projecting visual interneurones in the honeybee brain. J. Exp. Biol. 133: 301-315.
    Hiraguchi, T. and Yamaguchi, T. 2000. Escape behavior in response to mechanical stimulation of hindwing in cricket, Gryllus bimaculatus. J. Insect Physiol. 46: 1331-1340.
    Horseman, B. G., Gebhardt, M. J. and Honegger, H. W. 1997. Involvement of the suboesophageal and thoracic ganglia in the control of antennal movements in crickets. J. Comp. Physiol. 181: 195-204.
    Hu, K. G. and Stark, W. S. 1980. The role of Drosophila ocelli and compound eyes in phototaxis. J. Comp. Physiol. 135: 85-95.
    Jeffrey, M., Camhi, J. M. and Levy, A. 1988. Organization of a complex movement: Fixed and variable components of the cockroach escape behavior. J. Comp. Physiol. 163: 317-328.
    Kastberger, G. 1990. The ocelli control the flight course in honeybees. Physiol. Entomol. 15: 337-346.
    Kastberger, G. and Schuhmann, K. 1993. Ocellar occlusion effect on the flight behaviour of homing honeybee. J. Insect Physiol. 39: 589-600.
    Kirchner, W. H. 1994. Hearing in honeybees: The mechanical response of the bee’s antenna to near field sound. J. Comp. Physiol. 175: 261-265.
    Lazzari, C. R. 1992. Circadian organization of locomotion activity in the haematophagous bug Triatoma infestans. J. Insect Physiol. 38: 895-903.
    Lazzari, C. R., Reiseman, C. E. and Insausti, T. C. 1998. The role of the ocelli in the phototactic behaviour of the haematophagous bug Triatoma infestans. J. Insect Physiol. 44: 1159-1162.
    Levi, R. and Camhi, J. M. 1996. Producing directed behaviour: muscle activity patterns of the cockroach escape response. J. Exp. Biol. 199: 563-568.
    Liebenthal, E., Uhlman, O. and Camhi, J. M. 1994. Critical parameters of the spike trains in a cell assembly: coding of turn direction by the giant interneurons of the cockroach. J. Comp. Physiol. 174: 281-296.
    Miall, L. C. and Denny, A. 1886. The structure and life-history of the cockroach (Periplaneta americana), p. 224. London: Rovell Reeve.
    Miller, J. P., Jacobs, G. A. and Theunissen, F. E. 1991. Representation of sensory information in the cricket cercal sensory system. I. Response properties of the primary interneurons. J. Neurophysiol. 66: 1680-1689.
    Mizunami, M. 1994. Processing of contrast signals in the insect ocellar system. Zool. Sci. 11: 175-190.
    Mizunami, M. 1995a. Morphology of higher-order ocellar interneurons in the cockroach brain. J. Comp. Neurol. 362: 293-304.
    Mizunami, M. 1995b. Neural organization of ocellar pathways in the cockroach brain. J. Comp. Neurol. 352: 458-468.
    Mizunami, M. 1995c. Functional diversity of neural organization in insect ocellar systems. Vision Res. 35: 443-452.
    Mizunami, M. and Tateda, H. 1986. Classification of ocellar interneurones in the cockroach brain. J. Exp. Biol. 125: 57-70.
    Numata, H. and Hidaka, T. 1983. Compound eyes as the photoperiodic receptors in the bean bug. Experientia 39: 868-869.
    Nye, S. W. and Ritzmann, R. E. 1992. Motion analysis of leg joints associated with escape turns of the cockroach, Periplaneta americana. J. Comp. Physiol. 171: 183-194.
    Okada, J. and Toh, Y. 1998. Shade response in the escape behavior of the cockroach, Periplaneta americana. Zoo. Sci. 15: 831-835.
    Okada, J. and Toh, Y. 2000. The role of antennal hair plates in object-guided tactile orientation of the cockroach (Periplaneta americana). J. Comp. Physiol. 186: 849-857.
    Pearson, K. G. 1972. Central programming and reflex control of walking in the cockroach. J. Exp. Biol. 56: 173-193.
    Pearson, K. G. 1976. The control of walking. Sci. Am. 235: 72-86.
    Pearson, K. G. and Goodman, C. S. 1979. Correlation of variability in structure with variability in synaptic connections of an identified interneurone in locusts. J. Comp. Neurol. 184: 141-166.
    Pearson, K. G. and Iles, I. F. 1971. Innervation of coxal depressor muscle in the cockroach, Periplaneta americana. J. Exp. Biol. 54: 215-232.
    Price, R. B. and Ache, B. W. 1977. Peripheral modification of chemosensory information in the spiny lobster. Comp. Biochem Physiol. 57: 249-253.
    Reisenman, C. E., Lazzari, C. R. and Giurfa, M. 1998. Circadian control of photonegative sensitivity in the haematophagous bug Triatoma infestans. J. Comp. Physiol. 183: 533-541.
    Rence, B. G., Lisy, M. T., Garves, B. R. and Quinlan, B. J. 1988. The role of ocelli in circadian singing rhythms of crickets. Physiol. Entomol. 13: 201-212.
    Ritzmann, R. E. and Pollack, A. J. 1986. Identification of thoracic interneurons that mediate giant interneuron-to-motor pathways in the cockroach. J. Comp. Physiol. 159: 639-654.
    Ritzmann, R. E. and Pollack, A. J. 1994. Responses of thoracic interneurons to tactile stimulation in the cockroach, Periplaneta americana. J. Neurobiol. 25: 1113-1128.
    Ritzmann, R. E., Pollack, A. J., Hudson, S. E. and Hyvonen, A. 1991. Convergence of multi-modal sensory signals at thoracic interneurons of the escape system of the cockroach, Periplaneta americana. Brain Res. 563: 175-183.
    Ritzmann, R. E., Tobias, M. L. and Fourtner, C. R. 1980. Flight activity initiated via giant interneurons of the cockroach: evidence for bifunction trigger interneurons. Science 210: 443-445.
    Roessingh, P., Bouaichi, A. and Simpson, S. J. 1998. Effects of sensory stimuli on the behavioural phase state of the desert locust, Schistocerca gregaria. J. Insect Physiol. 44: 883-893.
    Rowell, C. H. F. 1971. The orthopteran descending movement detector (DMD) neurons: a characterization and review. Z. Vergl. Physiol. 73: 167-194.
    Rowell, C. H. F. 1988. Mechanism of flight stearing in locusts. Experientia 44: 389-395.
    Rowell, C. H. F. and Pearson, K. G. 1983. Ocellar input to the flight motor system of the locust-structure and function. J. Exp. Biol. 103: 265-288
    Rozhkova, G. I., Rodionova, H. I. And Popov, A. V. 1984. Two types of information processing in cercal systems of insects: directional sensitivity of giant interneurons. J. Comp. Physiol. 154: 805-815.
    Ruck, P. 1958. Dark adaptation of the ocellus in Periplaneta americana: a study of the electrical response to illumination. J. Insect Physiol. 2: 189-198.
    Schaller, D. 1978. Antennal sensory system of Periplaneta americana L. Cell Tissue Res. 191: 121-139.
    Schuppe, H. and Hengstenberg, R. 1993. Optical properties of the ocelli of Calliphora erythrocephala and their role in the dorsal light response. J. Comp. Physiol. 173: 143-149.
    Shiga, S. and Numata, H. 1996. Effects of compound eye-removal on the photoperiodic response of the band-legged ground cricket, Pteronemobius nigrofasciatus. J. Comp. Physiol. 179: 625-633.
    Shiga, S. and Numata, H. 1997. Induction of reproductive diapause via perception of photoperiod through the compound eyes in the adult blow fly, Protophormia terraenovae. J. Comp. Physiol. 181: 35-40.
    Silverman, J. 1977. Patterns of response to sex pheromone by young and mature adult male cockroachs Periplaneta americana. J. Insect Physiol. 23: 1015-1019.
    Simmons, P. 1980. A locust wind and ocellar brain neurone. J. Exp. Biol. 85: 281-294.
    Stange, G. 1981. The ocellar component of flight equilibrium control in dragonflies. J. Comp. Physiol. 141: 335-347.
    Stange, G. and Hengatenberg, R. 1996. Tri-axial, real time logging of fly head movements. J. Neurosci. Methods 64: 209-218.
    Stierle, I. E., Getman, M. and Comer, C. M. 1994. Multisensory control of escape in the cockroach Periplaneta americana. I. Initial evidence from patterns of wind-evoked behavior. J. Comp. Physiol. 174: 1-11.
    Taneja, J. and Guerin, P. M. 1995. Oriented responses of the triatoine bugs Rhodnius prolixus and Triatoma infestans to vertebrate odours on a servosphere. J. Comp. Physiol. 176: 455-464.
    Taylor, C. P. 1981a. Contribution of compound eyes and ocelli to steering of locusts in flight. I. Behavioural analysis. J. Exp. Biol. 93: 1-18.
    Taylor, C. P. 1981b. Contribution of compound eyes and ocelli to steering of locust in flight. Ⅱ. Timing changes in flight motor units. J. Exp. Biol. 93: 19-31.
    Tobias, M. L. and Ritzmann, R. E. 1984. Responses of mesothoracic motor neurons to giant interneuron stimulation in the cockroach, J. Comp. Physiol. 154: 633-640.
    Tobler, I .1983. Effect of forced locomotion on the rest-activity cycle of the cockroach. Behav. Brain Res. 8: 351-360.
    Toh, Y. and Hara, S. 1984. Dorsal ocellar system of the American cockroach. Ⅱ. Structure of the ocellar tract. J. Ultrastruct. Res. 86: 135-148.
    Toh, Y. and Sagara, H. 1984. Dorsal ocellar system of the American cockroach. I. Structure of the ocellus and ocellar nerve. J. Ultrastruct. Res. 86: 119-134.
    Toh, Y. and Yokohari, F. 1988. Postembryonic development of the dorsal ocellus of the Americana cockroach. J. Comp. Neurol. 269: 157-167.
    Tomioka, K. and Yukizane, M. 1997. A specific area of the compound eye in the cricket Gryllus bimaculatus sends photic information to the circadian pacemaker in the contralateral optic lobe. J. Comp. Physiol. 180: 63-70.
    Usherwood, P. N. R. 1962. The nature of ‘slow’ and ‘fast’ contractions in the coxal muscle of the cockroach. J. Insect Physiol. 8: 31-52.
    Warzecha, A. K. and Egelhaaf, M. 2000. Response latency of motion-sensitive neuron in the fly visual system: dependence on stimulus parameters and physiological conditions. Vision Res. 40: 2973-2983.
    Watson, J. T. and Ritzmann, R. E. 1994. The escape response versus the quiescent response of the American cockroach: behavioural choice mediated by physiological state. Animal Behav. 48: 476-478.
    Watson, J. T. and Ritzmann, R. E. 1995. Combined intracellular stimulation and high speed video motion analysis of motor control neurons in the cockroach. J. Neurosci. Methods 61: 151-157.
    Watson, J. T. and Ritzmann, R. E. 1998a. Leg kinematics and muscle activity guring treadmill running in the cockroach, Blaberus discoidalis. I. Slow running. J. Comp. Physiol. 182: 11-22.
    Watson, J. T. and Ritzmann, R. E. 1998b. Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: Ⅱ. fast running. J. Comp. Physiol. 182: 23-33.
    Weber, G. and Renner, M. 1976. The ocellus of the cockroach Periplaneta americana (Blattariae). Receptory area. Cell Tissue Res. 168: 209-222.
    Wehner, R. 1987. “Matched filters”-neural models of the external world. J. Comp. Physiol. 161: 511-531.
    Wehrhahn, C. 1984. Ocellar vision and orientation in flies. Proc. R. Soc. Lond. B222: 409-411.
    Westin, J. 1979. Responses to wind record from the cercal nerve of the cockroach Periplaneta americana. I. Response properties of single sensory neurons. J. Comp. Physiol. 133: 97-102.
    Westin, J., Langberg, J. J. and Camhi, J. M. 1977. Responses of giant interneurons of the cockroach Perplaneta americana to wind puffs of different directions and velocities. J. Comp. Physiol. 121: 307-324.
    Wilson, M. 1978. The functional organisation of locust ocelli. J. Comp. Physiol. 124: 297-316.
    Wolken, J. J. and Gupta, P. D. 1961. Photoreceptor structures. The retinal cells of the cockroach eye. IV. Periplaneta americana and Blaberus giganteus. J. Biophys. Biochem. Cytol. 9: 720-724.
    Wunderer, H. and Kramer, J. J. D. 1989. Dorsal ocelli and light-induced diurnal activity patterns in the arctiid moth Creatonotos transiens. J. Insect Physiol. 35: 87-95.
    Ye, S. and Comer, C. M. 1996. Correspondence of escape-turning behavior with activity of descending mechanosensory interneurons in the cockroach, Periplaneta americana. J. Neurosci. 16: 5844-5853.
    Ye, S., Dowd, J. P. and Comer, C. M. 1995. A motion tracking system for simultaneous recording of rapid locomotion and neural activity from an insect. J. Neurosci. Methods 60: 199-210.
    Zeiner R. and Tichy H.1998. Combined effects of olfactory and mechanical inputs in antennal lobe neurons of the cockroach. J. Comp. Physiol. 182: 467-473.
    Zill, S. N. 1985. Proprioceptive feedback and the contral of cockroach walking. In: Feedback and Motor control in invertebrates and vertebrates. Eds. Barnes, W. J. P. and Gladden, M. H. CROOM HELM, pp. 187-208.

    QR CODE