研究生: |
溫彥侯 Yan-Hou Wen |
---|---|
論文名稱: |
兩輪式自我平衡車之控制器設計與實現 Design and Implementation of Controller for Two-Wheeled Robots |
指導教授: |
呂藝光
Leu, Yih-Guang |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 兩輪移動車 、PID控制器 、LQR控制器 、滑動控制器 、PWM |
英文關鍵詞: | Two-wheeled robots, LQR control, PID control, sliding mode control, PWM |
論文種類: | 學術論文 |
相關次數: | 點閱:447 下載:23 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是研究PID控制器、LQR控制器與滑動控制器應用於兩輪移動車之平衡上。由於兩輪移動車本身為不穩定系統,需要外加控制機制才能使其平衡。本論文針對一實體兩輪移動車,規劃與實現相關控制電路,並將PID控制器、LQR控制器與滑動控制器實現於微控制器,使兩輪移動車即使有外界干擾產生,亦可有效達成平衡。首先使用三軸加速度計與陀螺儀感測車身目前所處的角度與角速度,使用其角度誤差值與角速度誤差,透過PID控制器、LQR控制器與滑動控制器輸出適當的PWM Duty,並驅動馬達轉動使得車身平衡。最後比較其LQR控制器、PID控制器與滑動控制器的平衡效率與抗外部干擾之效能。並使用自行創意設計的手部感測方法,使得兩輪移動車的行駛效能更加全面,而兩輪移動車的實驗證明了我們所提出的方法的是可行的。
This thesis is to study the balance of two-wheeled robots by LQR (Linear Quadratic Regulator) control, PID (Proportional Integral Derivative) control and sliding mode control. A two-wheeled robot needs extra control mechanism to reach the balance because the system itself is unstable. This study implements the related control circuit to a real two-wheeled robot. By realizing the LQR control, PID control and sliding mode control into a microcontroller, the two-wheeled robot can still keep the balance even when the external interference is added. At first, by using the three-axis accelerometer and gyroscope to measure the angle and angular velocity of the body, the angle error and angular velocity error are generated. Then, the LQR algorithm, the PID algorithm and sliding mode algorithm generate the appropriate PWM (Pulse Width Modulation) duty to drive the motors such that the two-wheeled robot reaches the balance. Finally, we compare the balance efficiency and the efficiency of resisting the external interference for the LQR control, PID control and sliding mode control. And using a self-designed hand sensing method makes the driving performance more comprehensive. The experimental results of the two-wheeled robot show that the method proposed in this thesis is feasible.
SEGWAY網站,http://www.segway.com/,2013。
[2] O. Mayr , “The Origins of Feedback Control ,” MIT, Cambridge 1970.
[3] Y. Tanaka ,T. Murakami, “Self Sustaining Bicycle Robot with steering controller,” IEEE Advanced Motion Control Conference, pp.193-197, 2004.
[4] Smith H.J,T, Blackburn J.A., Am J Phys, “Experimental study of an inverted pendulum,” 1992.
[5] Y. Ha and S. Yuta, “Trajectory Tracking Control for Navigation Of Self-Contained Mobile Inverse Pendulum,” IEEE/RSJ/GI Int Conf.Advanced Robotic Systems and the Real World, Vol. 3, pp. 12-16, 1994.
[6] 王志凱,「智慧型兩輪車之平台研製與平衡控制」,碩士論文,聖約翰科技大學電機工程研究所,台灣,2009。
[7] 陳上澍,「以數位信號處理器為基礎之旋轉型雙節倒單擺系統甩上與平衡控制」,碩士論文,國立成功大學工程科學系碩士班,台灣,2006。
[8] 顧耀宏,「自平衡兩輪電動車之設計與控制」,碩士論文,國立中興大學電機工程研究所,台灣,2005。
[9] 江東穎,「兩輪式智慧型機器人之設計與實現」,碩士論文,中國文化大學數位機電科技研究所,台灣,2009。
[10] 張碩,「自動控制系統」,鼎茂圖書,台北,2001。
[11] F. Grasser, D. Alonso, C. Silvio and C. Rufer, “JOE: a mobile, inverted pendulum” IEEE Transactions on Industrial Electronics, Vol. 49, pp. 107-114, 2002.
[12] 黃正豪,「兩輪自走車之設計與實現-以NIOS為核心之行動控制」,碩士論文,國立中央大學電機所,台灣,2006。
[13] 汪志宇,「兩輪移動車模糊控制」,碩士論文,國立台灣師範大學應用電子系,台灣,2012。
[14] 吳國駿,「PID與狀態回受控制器應用於倒單擺系統之分析比較」,碩士論文,國立高雄應用科技大學電機工程系碩士班,台灣,2007。
[15] 陳永平、張浚林,「可變結構控制設計」,全華科技圖書,2002。
[16] Y.S. Ha, S. Yuta, “Trajectory tracking control for navigation of the inverse pendulum type self-contained mobile robot,” Robotics and Autonomous System, Vol. 3, pp.1875- 1882, 1994.
[17] M. Sasaki, N. Yanagihara, O. Matsumoto and K. Komoriya, “Forward and Backward Motion Control of Personal Riding-type Wheeled Mobile Platform,” Proc. of the 2004 IEEE Int. Conf. on Robotics & Automation, pp. 3331–3336, 2004.
[18] D.B.Shin, J.P.Hong, S.B.Chung, and S.H.Hong, “The Controller and Its Algorithm for Powered Wheelchair Based on BLDC Motor,” Proc. Of ICEIC. Vol. 2, pp.522-525, 2000.
[19] H. Osinga and J. Hauser, “On Geometry of Optimal Control: the Inverted Pendulum Example, Example,” Proc. of American Control Conference, Vol. 2, pp. 1721-1726, 2001.
[20] M. Widjaja and S. Yurkovich, “Intelligent Control for Swing Up and Balancing of an Inverted Pendulum System,” Proc. of the 4th IEEE Conf. on Control Applications, pp. 534-542, 1995.
[21] K. Furuta, “Design of Variable Structure Controllers,” IEEE Proc. of the 39th Conf. on Decision and Control, pp. 1685-1690, 2000.
[22] C. Edwards and S. K. Spurgeon, “Sliding Mode Control: Theory and applications”, London: Taylor and Francis, 1998.
[23] J. P. F. Garcia, J. M. S. Ribeiro, J. J. F. Silva and E. S. Martins, “Continuous-time and discrete-time sliding mode control accomplished using a computer”, IEE Proc. Control Theory and Applications, Vol. 152, No. 2, pp. 220-228, March. 2005.
[24] U. Itkis, “Control Systems of Variable Structur” , New York: John Wieley, 1976.
[25] T. D. Ledgerwood and E. A. Misawa, “Controllability and Nonlinear Control of a Rotational Inverted Pendulum,” Advances in Robust and Nonlinear Control Sysytems, DSC-Vol. 43, ASME, pp. 81-88, 1992.
[26] J.Y. Hung, W. Gao, J. C. Hung,“Variable Structure Control : A Survey”,IEEE Transactions on Industrial Electronics, Vol.40, Vo.1, pp. 2-22, Feb. 1993.
[27] C. E. Lin and Y. R. Sheu, “A Hybrid-Control Approach for Pendulum-Car Control,” IEEE Trans. on Industrial Electronics, Vol. 39, No. 3, pp. 208-214, 1992.