簡易檢索 / 詳目顯示

研究生: 周昌翰
Chang-Han Jou
論文名稱: 以電磁驅動之二維高精度定位平台設計與控制
Design and Control for a 2-DOF High-Precision Positioning Platform Using Electical-Magnetic Device
指導教授: 陳美勇
Chen, Mei-Yung
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 111
中文關鍵詞: 電磁力驅動器微米級微步進定位平台模糊控制適應控制
英文關鍵詞: Electro-magnetic Actuator, micro Positioner, Fuzzy control, Adaptive control
論文種類: 學術論文
相關次數: 點閱:272下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究之目的是設計並實現一新型、長行程、二自由度運動的微米級定位平台。本研究是基於本精密運動實驗室以前對於電磁驅動器研究之基礎,再結合機構之設計,進行一創新型之微米級微步進定位平台之研製作為本研究之主要課題。我們所設計之新型電磁推力精密定位系統,其構造是由兩個主動式之線圈與一個兩端鑲有永久磁鐵之被動式移動平台所組成,而其驅動原理是利用電磁線圈與永久磁鐵間所產生之相互作用力,藉由調整輸入電磁線圈之電流,而改變運動平台之位置。因此特殊之機構設計使本研究之定位系統運行時,具有兩倍之推力。
    首先,我們先設計與實現定位系統受控裝置並且對其建立與分析系統之動態模型,而後則分別建立PID控制器、適應模糊控制器與適應滑動模式控制器並且對滑軌之摩擦力作補償設計。由模擬與實驗結果證明此系統為可行的。
    本論文所設計的平台在X與Y二維度之最大行程可達 ,且最高解析度為 ,平台整體尺度為 。平台主體機構採用鋁合金材料,以減輕定位平台之重量,導引裝置採用上銀科技之線性滑軌;致動裝置則X軸與Y軸分別使用兩組電磁驅動致動器來達成定位平台二維之運動。

    This paper proposes a novel 2-DOFs positioner system with large travel ranges is presented. This research is a foundation studied to the electromagnetic driver in the past on the basis of the precise motion control laboratory, and Combine the design of the mechanism, that design a novel micro positioner is the main task of this research. We design a novel electromagnetic precise position system which is consisted of electrical-magnetic system (coil and permagnet) and motion pad. The movement of the motion pad is due to the repelling force between the coils and the magnets affixed to the pad. It's to change the position of the movement platform by adjusting the current of the electromagnetic coils. Therefore, the special mechanism designs while making the position system of this research motion, have double thrust.

    First, the plant and the dynamic model are derived and analyzed. Next, PID controller, adaptive fuzzy controller and adaptive sliding mode controller are established and linear guide produce friction is compensated by Tustin model. From simulation and experiment results, possible implementation, and satisfactory performances, and have been demonstrated.

    The concept of this system intends to achieve three goals: the first one is large traveling range within . The second is precision positioning within , and its size is as compact as . The subject organization of the platform adopts the aluminium alloy material, in order to lighten the weight of the localization platform, the guiding devices adopt the linear slide rail of Hiwin; X axle and Y axle separately use two electromagnetic actuator to reach the platform two-dimentional motion .

    摘 要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究動機與目的 7 1.4 本論文之貢獻 8 1.5 論文架構 8 第二章 理論基礎 9 2.1 羅倫茲力原理 9 2.2 電位向量與向量位移方程式 11 2.3 比爾沙法疊加(superposition integral of Biot-Savar Law) 14 2.4 電磁鐵造成磁場 16 2.4.1 圓柱形電磁鐵之磁場 16 2.5 磁場由於載電流直導線 17 2.6 永久磁鐵 20 第三章 系統組成設計與配置 26 3.1 設計流程規劃 26 3.2 電磁式致動器 26 3.2.1 音圈馬達 26 3.2.2 電磁式致動器設計 27 3.3 x-y軸定位平台設計 31 3.3.1 x軸定位平台設計 32 3.3.2 y軸定位平台設計 33 3.4 量測系統 34 3.5 定位平台整體架構 35 第四章 系統模型推導 38 4.1 力量描述與分配 38 4.1.1 電磁推力致動器之推力特徵 38 4.2 動態方程式 42 第五章 控制系統設計 45 5.1 PID 控制器 47 5.1.1 Ziegler-Nichols調整演算法 49 5.1.2 Chien-Hrones-Reswick調整演算法 50 5.1.3 Cohen-Coon調整演算法 52 5.2 適應模糊控制器設計 52 5.2.1 模糊控制器設計 54 5.2.2 穩定性分析 57 5.2.3 模擬結果 59 5.3 適應順滑模型控制器設計 61 5.3.1 順滑平面 62 5.3.2 控制器形式 63 5.3.3 穩定性分析 64 5.3.4 模擬結果 66 第六章 實驗結果與討論 69 6.1 實驗設備 69 6.1.1 定位平台 69 6.1.2 控制器介面 72 6.1.3 感測器與驅動器 78 6.2 PID控制器實驗結果 79 6.2.1 定點控制 79 6.2.2 正弦波控制 81 6.2.3 方波控制 83 6.3 適應模糊控制器實驗結果 84 6.3.1 定點控制 84 6.3.2 正弦波控制 86 6.3.3 方波控制 86 6.3.4 連續步階定位控制 87 6.4 適應順滑模式控制器實驗結果 88 6.4.1定點控制 88 6.4.2 正弦波控制 90 6.4.3 方波控制 91 6.4.4 連續步階定位控制 91 6.5 實驗結果總結 92 第七章 結論及未來展望 92 參 考 文 獻 94

    [1] P. D. Atherton, Y. Xu., and M. McConnel, ”New X-Y Stage for Positioning and Scanning,” Proceedings of SPIE’s Annual Meeting, Denver, USA, Aug. 1996.
    [2] Y. Xu, P. D. Atherton, M. McConnel, and T. R. Hicks, “Design and Characteristic of Nanometer Precision Mechanisms,” Proceedings of American Society for Precision Engineering Annual Meeting, USA, 1996.
    [3] D. Heuderson, D. Jensen, and P. Piccirilli, “Recent advancements in Piezoelectric Stepping Motors,” Proceedings of American Society for Precision Engineering Annual Meeting, USA, 1996.
    [4] H. Isobe, T. Moriguchi, and A. Kyusojin, “Development of Piezoelectric XYZ Positioning Device Using Impulsive Force,” 日本精密工學會誌, Vol. 62, no. 4, 1996.
    [5] J. W. Ryu and D. G. Gweon, “High Precision X-Y-θ Micropositioning Stage Using Monolithic Flexure-Pivoted Linkages,” Proceedings of American Society for Precision Engineering Annual Meeting, USA, 1996.
    [6] 張昫揚, “Study in Long-range and Nanometer Positioning System,” Master thesis. National Chung Hsing University, Taiwan, R. O. C., 2002.
    [7] Jong-Youp Shim and Dae-Gab Gweon, ”Piezo-driven metrological multiaxis nanopositioner,” Review of Scientific Intruments, American Institute of Physics, 2001.
    [8] 蔡嘉峰, ”Integrated Design and Control to Improve Robustness and Upgrade Positioning Precision on Planar Maglev System,” Master thesis. National Taiwan University, Taiwan, R. O. C., 2002.
    [9] Products P-780, Physik Instrumente Product Catalog, 2005.
    [10] D.L.Trumper, M.C.Weng, and R.J.Ritter, “Magnetic suspension and vibration control of beams for non-contact processing,” in Proc.IEEE CCA-CACSD ’99, pp. 551-557, 1999.
    [11] 傅世澤, “Optimal Design and Characterization of a Nanometer Positioning Stage,” Master thesis. National Chung Hsing University, R. O. C., 2000.
    [12] M. Kobayashi, T. Yamaguchi and R. Horowitz, “Track Seeking Controller Design for Dual-Stage Actuator in Magnetic Disk Drives,” Proceedings of American Control Conference, pp. 2610-2614, June 2000.
    [13] S. Verma, K. Won-jong, and H. Shakir, “Multi-axis maglev nanopositioner for precision manufacturing and manipulation applications,” IEEE Transactions on Industry Applications, Vol. 41, pp. 1159-1167, 2005.
    [14] Sheng-Chih Huang, Shao-Kang Hung, Mei-Yung Chen, Chih-Hsien Lin, and Li-Chen Fu, “A Novel six-DOF Electromagnetic Precision Positioner Utilizing Hybrid Magnetic and Fluid Mechanism,” IEEE Conference on Industrial Electronics, Taipei, Taiwan, Nov. 5-8, 2007.
    [15]白榮修, “The Study of Magnetostrictive Actuator-with-sensing Co-structure System,” Master thesis. Feng Chia University, Taiwan, R. O. C., 2003.
    [16] Won-Jong Kim, James H. Goldie, Michael J. Gerver, Jerome E. Kiley, and John R. Swenbeck, “Extended-Range Linear Magnetostrictive Motor with Double-Sided Three-Phase Stators,” IEEE Transactions on Industry Applications, Vol. 38, no. 3, May/June 2002.
    [17] Faa-Jeng Lin and Po-Huang Shieh, “Recurrent RBFN-Based Fuzzy Neural Network Control for X-Y-Θ Motion Control Stage Using Linear Ultrasonic Motors,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, Vol. 53, no. 12, December 2006.
    [18] M. Iwashiro, M. Yatsu and H. Suzuki, “Time Optimal Track-to-Track Seek Control by Model Following Deadbeat Control,” IEEE Transaction on Magnetics, Vol. 35, no. 2, pp. 904-909, March 1999.
    [19] I.M. Choi, S.H. Kim and Y.K. Kwak, “Design and Control of Time Tracking Actuator for Optical Disk,” IEEE International Conference on Intelligent Robots and Systems, pp. 1878-1883, 1999.
    [20] H. A. H. a. and J. R. Melcher, “Electromagnetic Field and Energy,” Inc., 1996.
    [21] R. Ortega and R. Kelly, “PID self-tuners: Some Theoretical and Practical Aspects,” IEEE Transactions Ind. Electron., Vol. IE-31, pp. 332–338, Nov. 1984.
    [22] P.A.Weaver and R.M.Ehrlich, “The Use of Multirate Notch Filters in Embedded-Servo Disk Drives,” IEEE International Conference on American Control, pp. 4156-4160, 1993.
    [23] Mei-Yung Chen, Tzuo-Bo Lin, Shin-Guang Huang, and Li-Chen Fu, “Design, Analysis and Control of an Electro-Magnetic Actuator,” IEEE International Conference on American Control, pp. 1233-1238, 2003.
    [24] http://www.hiwin.com.tw/---------------------------------------------2008.05.24
    [25] 韓曾晉編著,「適應控制系統-Control Systems of Adaptive」,科技圖書股份有限公司,37~346頁,民國八十一年六月初版。
    [26] S. Peng and S. Shyh-Pyng, “Robust H∞ control for linear discrete-time systems with norm-bounded nonlinear uncertainties,” IEEE Transactions on Automatic control, Vol. 44, pp. 108-111, 1999.
    [27] 陳永平、張浚林編著,「可變結構控制設計」,全華科技圖書股份有限公司,1-1~8-52頁,民國九十一年九月二版。
    [28] D.Guang-Ren and D. Howe, “Robust magnetic bearing control via eigenstructure assignment dynamical compensation,” IEEE Transactions on Control systems technology, Vol. 11, pp. 204-215, 2003.
    [29] H.Sung-Kyung and R. Langari, “Robust fuzzy control of a magnetic bearing system subject to harmonic disturbances,” IEEE Transactions on control systems technology, Vol. 8, pp. 366-371, 2000.
    [30] Kiam Heong Ang, Gregory Chong, and Yun Li, “PID Control System Analysis, Design, and Technology,” IEEE Transactions on control systems technology, Vol. 13, no. 4, July 2005.
    [31] J.C. Basilio and S. R. Matos, “Design of PI and PID Controllers with transient Performance specification,” IEEE Transactions on Education, Vol. 45, no. 4, November 2002.
    [32] Li-Xin Wang, “Stable Adaptive Fuzzy Control of Nonlinear Systems,” IEEE Transactions on fuzzy system, Vol. 1, no. 2, pp. 146-155, 1993.
    [33] C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller, parts I and II,” IEEE Transactions on systems, Man, Cybern, Vol. 20, no. 2, pp. 404-435, 1990.
    [34] L. X. Wang and J. M. Mendel, “Fuzzy basis functions universal approximation, and orthogonal least squares learning,” IEEE Transactions on neural network, Vol.3, pp. 807-814, 1992.

    下載圖示
    QR CODE