研究生: |
張紹甫 Shao Fu Chang |
---|---|
論文名稱: |
CsI閃爍體特殊結構製作與顯微結構分析之研究 A Study on Fabrication and Microstructural Characteristics of CsI |
指導教授: | 郭金國 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 閃爍晶體 、碘化銫 、鋁陽極奈米模板 、熱浸法 |
英文關鍵詞: | scintillator, cesium iodide (CsI), anodic aluminum oxide (AAO) templates, thermal casting method |
論文種類: | 學術論文 |
相關次數: | 點閱:182 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用99.999%高純度鋁材,經過二次陽極處理法製作出表面具高孔隙度、規則孔洞分佈之鋁陽極奈米模板(anodic aluminum oxide,AAO),隨著製程條件(如:施加電壓、電化學槽溫度與擴孔時間等)之不同與電化學反應系統的控制可製得80~450nm之不同管徑的AAO,其孔洞密度可達10^8~10^10孔洞.cm^-2,同時利用浸漬法與熱熔法將碘化銫閃爍晶體材料沉積進入AAO模板內,製得單晶結構之碘化銫次微米線,而此高深寬比與高密度之AAO結構與碘化銫次微米線之形成機制將分別以電化學和熱力學解釋之。
This study used 99.999% high purity aluminum foil through two steps anodization process making a high pore densities, ordering anodic aluminum oxide (AAO) templates. The various AAO pore diameters from 80 nm to 450 nm can be controlled well by controlling electrochemical sysyem and adjusting parameters such as applied voltage, electrolyte temperature and pore widening time, etc. AAO pore densities can be evaluated from 10^8 to 10^10 pore•cm^-2. Then, the single crystal of cesium iodide (CsI) sub-microwires were fabricated by liquid phase deposition method and thermal casting method. The mechanisms of this high aspect ratio and high densities structure and CsI sub-microwires forming were discussed and explained using the electrochemistry and thermodynamics.
[1] C. T. Leondes, Medical Imaging Systems Technology: Analysis and Computational Methods, Singapore: World Scientific Publishing Company, (2005).
[2] P. A. Van den Elsen, E.-J.D. Pol, and M. A. Viergever, Medical image matching-a review with classification, Engineering in Medicine and Biology Magazine, 12(1), (1993) 26-39.
[3] M. Chow, L. Chan, Development and evaluation of a compartmental picture archiving and communications system model for integration and visualization of multidisciplinary biomedical data to facilitate student learning in an integrative health clinic, Computers & Education, 54(3), (2010) 733-741.
[4] V.V. Nagarkar, S.V. Tipnis, V. Gaysinskiy, S.R. Miller, I. Shestakova, High-speed digital radiography using structured CsI screens, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 213, (2004) 476-480.
[5] P. Magnan, Detection of visible photons in CCD and CMOS: A comparative view, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 504(1-3), (2003) 199-212.
[6] C.M. Schaefer-Prokop, D.W. De Boo, M. Uffmann, M. Prokop, DR and CR: Recent advances in technology, European Journal of Radiology, 72(2), (2009) 194-201.
[7] Andreas Koch, Carsten Raven, Per Spanne, and Anatoly Snigirev, X-ray imaging with submicrometer resolution employing transparent luminescent screens, Journal of the Optical Society of America A, 15(7), (1998) 1940-1951.
[8] 陳玉安、王必本、廖其龍 編著,現代功能材料,中國:重慶大學出版社,(2008)。
[9] Svetlana Zazubovich, Physics of halide scintillators, Radiation Measurements, 33(5), (2001) 699-704.
[10] U.L. Olsen, X. Badel, J. Linnros, M. Di Michiel, T. Martin, S. Schmidt, H.F. Poulsen, Development of a high-efficiency high-resolution imaging detector for 30–80 keV X-rays, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 576(1), (2007) 52-55.
[11] A. M. Gurvich, Luminescent screens for mammography, Radiation Measurements, 24(4), (1995) 325-330.
[12] Andreas Koch, Harald Rosenfeldt, Powder-phosphor screens combined with interference filters for X-ray imaging with increased brightness, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 432(2-3), (1999) 358-363.
[13] C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, and V. Kohn, Phase‐contrast microtomography with coherent high‐energy synchrotron x rays, Applied Physics Letters, 69(13), (1996) 1826-1828.
[14] A. Lempicki, C. Brecher, P. Szupryczynski, H. Lingertat, V. V. Nagarkar, S. V. Tipnis, and S. R. Miller, A new lutetia-based ceramic scintillator for X-ray imaging, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 488(3), (2002) 579-590.
[15] E. Zych, C. Brecher, and H. Lingertat, Depletion of high-energy carriers in YAG optical ceramic materials, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54(11), (1998) 1771-1777.
[16] W. Knüpfer, E. Hell, D. Mattern, Novel X-ray detectors for medical imaging, Nuclear Physics B - Proceedings Supplements, 78(1-3), (1999) 610-615.
[17] V.V. Nagarkar, T.K. Gupta, S.R. Miller, Y. Klugerman, M.R. Squillante, and G. Entine, Structured CsI(T1) Scintillators for X-ray Imaging Applications, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 45(3), (1998) 492-496.
[18] Cheng Jianbo, Chen Wenbin, Yang Kaiyu, HighluminanceYAGsinglecrystalphosphorscreen, Displays, 21(5), (2000) 195-198.
[19] Marco Stampanoni, Gunther Borchert, Peter Wyss, Rafael Abela, Bruce Patterson, Steven Hunt, Detlef Vermeulen, ...Peter Rüegsegger, High resolution X-ray detector for synchrotron-based microtomography, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 491(1-2), (2002) 291-301.
[20] Yu Zorenko, I. Konstankevych, M. Globus, B. Grinyov, V. Lyubinskiy, New scintillation detectors based on oxide single crystal films for biological microtomography, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 505(1-2), (2003) 93-96.
[21] Yu Zorenko, V. Gorbenko, I. Konstankevych, B. Grinev, M. Globus, Scintillation properties of Lu3Al5O12:Ce single-crystalline films, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 486(1-2), (2002) 309-314.
[22] A. Ananenko, A. Fedorov, A. Lebedinsky, P. Mateychenko, V. Tarasov, Yu. Vidaj, structural dependence of CsI(Tl) film scintillation properties, Semiconductor Physics, Quantum Electronics & Optoelectronics, 7(3), (2004) 297-300.
[23] M.A. Nitti, N. Cioffi, E. Nappi, B.K. Singh, A. Valentini, Influence of bias voltage on the stability of CsI photocathodes exposed to air, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 493(1-2), (2002) 16-24.
[24] T. Jing, C. A. Goodman, J. Drewery, G. Cho, W.S. Hong, H. Lee, ...D. Wildermuth, Amorphous silicon pixel layers with cesium iodide converters for medical radiography, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 41(4), (1994) 903-909.
[25] G. E. Thompson, R. C. Furneaux, G. C. Wood, Electron microscopy of ion beam thinned porous anodic films formed on aluminium, Corrosion Science, 18(5), (1978) 481-491.
[26] G. E. Thompson, G. C. Wood, Porous anodic film formation on aluminium, Nature, 290, (1981) 230-232.
[27] Chien Chon Chen, Chi Liang Chen, Yi-Sheng Lai, Template Assisted Fabrication of Pt–Sn Core–Shell Nanospheres, Materials Chemistry and Physics, 131(1-2), (2011) 250-253.
[28] Chien Chon Chen, Shih Hsun Chen, Sheang Wen Shyu, Sheng Jen Hsieh, Use of Nanostructures in Fabrication of Large Scale Electrochemical Film, Physics Procedia, 25, ( 2012 ) 44 – 49.
[29] 陳建仲,薛聿芮,溫義楷,陽極氧化鋁與氧化鈦奈米管的製作與表面積的評估,工業材料雜誌,第277期,第153-162頁,2010年。
[30] Charles R. Martin, Nanomaterials: A Membrane-Based Synthetic Approach, Science, 266(5193), (1994) 1961-1966.
[31] D. J. Sellmyer, M. Zheng, R. Skomski, Magnetism of Fe, Co and Ni nanowires in self-assembled arrays, Journal of Physics: Condensed Matter, 13(25), (2001) 433-460.
[32] C. A. Ross, M. Hwang, M. Shima, Henry I. Smith, M. Farhoud, T. A. Savas, ...M. Redjdal, Magnetic properties of arrays of electrodeposited nanowires, Journal of Magnetism and Magnetic Materials, 249(1-2), (2002) 200-207.
[33] Qingtao Wang, Guanzhong Wang, Bo Xu, Jiansheng Jie, Xinhai Han, Gongpu Li, ...J. G. Hou, Non-aqueous cathodic electrodeposition of large-scale uniform ZnO nanowire arrays embedded in anodic alumina membrane, Materials Letters, 59(11), (2005) 1378-1382.
[34] A. Saedi, M. Ghorbani, Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template, Materials Chemistry and Physics, 91(2-3), (2005) 417-423.
[35] R. S. Liu, S. C. Chang, S. F. Hu,C. Y. Huang, Highly ordered magnetic multilayer Ni/Cu nanowires, Physica status solidi (c), 3(5), (2006) 1339-1342.
[36] M. S. Sander, L. S. Tan, Nanoparticle arrays on surfaces fabricated using anodic alumina films as template, Advanced Functional Materials, 13(5), (2003) 393-397.
[37] Kyung T. Kim, Sung M. Cho, A simple method for formation of metal nanowires on flexible polymer film, Materials Letters, 60(3), (2006) 352-355.
[38] M. T. Wu, I. C. Leu, J. H. Yen, and M. H. Hon, Preparation of Ni nanodot and nanowire arrays using porous alumina on silicon as a template without a conductive interlayer, Electrochemical and Solid-State Letters, 7(5), (2004) C61-C63.
[39] 劉國晏,高真空壓鑄法製備陣列式錫鉛合金奈米線氣體感測器,臺北科技大學機電整合研究所學位論文,(2012)。
[40] S. Rutishauser, I. Zanette, T. Donath, A. Sahlholm, J. Linnros, C. David, Structured scintillator for hard x-ray grating interferometry,
Applied Physics Letters, 98(17), (2011) 171107.
[41] Syverud, JANAF Thermochemical Table, 3rd ed., J. Phys. Chem. Ref. Data, USA, (1985).
[42] I. Barin, Thermochemical Data of Pure Substances, Germany, (1989).
[43] M. Pourbaix, Texas/National Association of Corrosion Engineers, Houston, USA, (1974).
[44] B. Lemay, and B. Murphy, Chemistry, 11th version., Pearson Education Inc, USA, (2009).
[45] W. D. Callister, Materials Science and Engineering, 3rd version., Mc Graw Hill, USA, (1994).
[46] Wikipedia Solubility table. 8/11/2012, http://en.wikipedia.org/wiki/Solubility_table#C
[47] Y. K. Rao, Stoichiometry and Thermodynamics of Metallurgical Processes, USA, (1985).
[48] H. Okamoto, Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski (1990).
[49] WebElements: The periodic table on the web. 20/5/2013, http://www.webelements.com/compounds/caesium/caesium_iodide.html