簡易檢索 / 詳目顯示

研究生: 江其錄
Chi-Lu Chiang
論文名稱: 痙孿度限制下之伺服馬達時間最佳化控制
Snap-Constrained Time-Optimal Control of Servomotors
指導教授: 呂有勝
Lu, Yu-Sheng
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 89
中文關鍵詞: 痙孿度時間最佳化控制
英文關鍵詞: snap constraint, time-optimal control
論文種類: 學術論文
相關次數: 點閱:154下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種痙攣度(Snap)限制下之伺服馬達時間最佳化控制,以使伺服系統有平順的輸出響應。痙攣度,為位置的四階導數,又名Jounce,亦即分別為急動度(Jerk)、加速度與速度的一階、二階與三階導數。過大的痙攣度可能會對系統造成不良的影響,故本文提出一痙攣度限制下之時間最佳化伺服控制法(Snap-constrained time-optimal control, SCTOC),其中包含位置控制與速度控制,此控制法不僅能限制最大痙攣度,又可達到最佳時間化的效果。SCTOC速度控制上是利用最佳時間控制器,結合一積分器與受控體串聯;在位置控制上則是利用最佳時間控制器結合兩積分器與受控體串聯;兩者皆直接地控制系統的痙攣度,因此可滿足最大痙攣度的限制。
    由於提出的SCTOC是一種依賴受控體模型及俱備切換法則的控制法,因此容易受到系統不確定性及系統干擾的影響。故在系統中加入一積分型動態補償干擾估測器(dynamically compensated integral disturbance observer, DC-IDOB)以補償干擾降低其對系統的影響。
    本文實驗受控體為無刷伺服馬達,以TI TMS320C6713 DSP與Xilinx 可程式閘陣列(FPGA)結合之單元為控制器,分別以C語言及硬體描述語言(VHDL)撰寫。以此平台為實驗系統,實現本文提出之痙攣度限制下之時間最佳化伺服控制法則,並由實驗結果證實其此控制法的可行及實用性。

    This paper presents a model-based time-optimal method under constraint on the maximum admissible snap. Snap, also known as jounce, is the fourth derivative of position, which is also the first, second and third derivatives of jerk, acceleration and velocity, respectively. Too large snap may have adverse effects on systems. Thus, snap-constrained time-optimal control method is proposed, including position and velocity control. This method not only limits the maximum snap but also has a time-optimal characteristic. The SCTOC for velocity control uses a time-optimal controller paired with an integrator that is in series with the plant. The SCTOC for position control uses a time-optimal controller paired with two integrators that are in series with the plant. Both SCTOCs directly control the system’s snap and thus are able to fulfill the snap constraint.
    This paper employs a symmetrically loaded servo motor as an experimental setup for the proposed control method. In the experimental system, the control kernel is a DSP/FPGA system, and the C language and VHDL are utilized as development tools for the servo control system. Experiments were conducted, and experimental results demonstrated that the SCTOC has better transient and steady responses than past approaches

    摘 要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VIII 第一章緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 急動度限制下之應用 2 1.2.2 Jerk-Constrained Time-Optimal Control (JCTOC) 3 1.2.3 痙攣度限制下之應用 4 1.2.4 干擾估測器 5 1.3 論文架構 7 第二章 實驗系統介紹 8 2.1 硬體與訊號處理架構 8 2.2 系統鑑別 11 第三章 痙攣度限制下之時間最佳化速度控制 13 3.1 三階積分系統之時間最佳化控制(Time-optimal control)回顧 13 3.2 痙攣度限制下時間最佳化速度控制 16 3.3 SCTOC加入DC-IDOB補償實驗 22 3.4 SCTOC、JCTOC與P控制速度控制比較實驗 26 3.4.1 相同安定時間之實驗 28 3.4.2 相同最大標稱控制量之實驗 32 3.4.3 提升速度命令於之實驗 36 3.4.4 不同負載之實驗 37 3.4.5 不同速度命令之實驗 43 3.4.6 不同痙攣度限制之實驗 45 第四章 痙攣度限制下之時間最佳化位置控制 48 4.1 四階積分系統之時間最佳化控制(Time-optimal control)回顧 48 4.2 痙攣度限制下時間最佳化位置控制 50 4.3 SCTOC加入DC-IDOB補償實驗 56 4.4 SCTOC、JCTOC與PD控制位置控制比較實驗 60 4.4.1 相同安定時間之實驗 62 4.4.2 相同最大標稱控制量之實驗 66 4.4.3 提升位置命令之實驗 70 4.4.4 不同負載之實驗 73 4.4.5 不同位置命令之實驗 76 4.4.6 不同痙攣度限制之實驗 78 第五章 結論 81 參考文獻 82 附錄A Jerk-Constrained Time-Optimal Veloctiy Control 85 附錄B Jerk-Constrained Time-Optimal Position Control 87

    [1] B. Rohrer, S. Fasoli, HI. Krebs, B. Volpe, J. Stein, WR. Frontera, N. Hogan, “Submovement overlap as a measure of movement smoothness,” in Proc. International Graphonomics Society, Arizonam, USA, 2003.
    [2] R. Shieh and Y. S. Lu, “Jerk constrained time-optimal control of a positioning servo,” in Proc. International Conference on Control Automation and Systems, Gyeonggi-do, Korea, pp. 1473–1476, 2010.
    [3] P. M. Thompson, “Snap, Crackle, and Pop,” in Proc. Aerospace Technology and Systems Conference, Santa Ana, CA, 2011.
    [4] 黃沛天,馬善鈞,從傳統力學到當今猝變動力學,大學物理,第25卷第1期。
    [5] W. Fan, X. S. Gao, W. Yan, C. M. Yuan, “Interpolation of parametric CNC machining path under confined jounce,” International Journal of Advanced Manufacturing Technology, vol. 62, nos. 5–8, pp. 719–739, 2012.
    [6] J. C. Sprott, “Some simple chaotic jerk functions,” American Journal of Physics, vol. 65, no. 6, pp. 537–543. 1997.
    [7] 呂有勝,江其錄,謝立文,"伺服馬達平順控制方法的研究",中華民國力學學會第三十六屆全國力學會議,2012.11。
    [8] 林聖泉,謝憲德,鄭銓鈞,"插秧機秧苗推出機構凸輪輪廓之分析與設計",農業機械學刊,第六卷,第三期,63–72, 1997.9。
    [9] S. R. Venkatesh, Y. M. Cho, and B. Kim, “Robust control of vertical motions in ultra-high rise elevators,” Control Engineering Practice, vol. 10, no. 2, pp. 121–132, 2002.

    [10] A. Olabi, R. Béarée, O. Gibaru, and M. Damak, “Feedrate planning for machining with industrial six-axis robots,” Control Engineering Practice, vol. 18, no. 5, pp. 471–482 , 2010.
    [11] R. A. Osornio-Rios, R. J. Romero-Troncoso, G. Herrera-Ruiz and R. Castañeda-Miranda, “FPGA implementation of higher degree polynomial acceleration profiles for peak jerk reduction in servomotors,” Robotics and Computer-Integrated Manufacturing, vol. 25, no. 2, pp. 379–392 , 2009.
    [12] 曾勝戎,CNC控制器之Nurbs曲線插補技術發展,國立中央大學機械工程研究所碩士論文,2006。
    [13] 謝立文,急動度限制下之定位伺服及其干擾補償,國立臺灣師範大學機電科技學系碩士論文,2013。
    [14] Y. S. Lu, “Smooth speed control of motor drives with asymptotic disturbance compensation,” Control Engineering Practice, vol.16, no.5, pp. 597–608, 2008.
    [15] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for quadrotors,” in Proc. International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, pp. 2520-2525, 2011.
    [16] J. S. Kim, D. Gracanin, F. Quek, “Sensor-fusion walking-in-place interaction technique using mobile devices,” in Proc. Virtual Reality Short Papers and Poster, Costa Mesa, CA, pp. 39-42, 2012.
    [17] B. R. Rohrer, “Evolution of movement Smooth and submovement patterns in Persons with Stroke”, Massachusetts Institute of Technology, Dept. of Mechanical Engineering, Thesis (Ph. D.), 2002.
    [18] M. Boerlage, R. Tousain, M. Steinbuch, “Jerk derivative feedforward control for motion systems,” in Proc. American Control Conference, Boston, USA, vol.5, pp.4843–4848, 2004.
    [19] Q. C. Pham, H. Hicheur, G. Arechavaleta, J. P. Laumond, A. Berthoz, “The formation of trajectories during goal-oriented locomotion in humans. II. A maximum smoothness model,” European Journal of Neuroscience, vol. 26, pp. 2391–2403, 2007.
    [20] 李岳豈,改良積分器於伺服馬達於伺服馬達之定位控制應用,國立臺灣師範大學機電科技學系碩士論文,2012。
    [21] 鄭百恩,雙軸機械手臂之適應性神經網路滑動模式控制,國立臺灣師範大學機電科技學系碩士論文,2013。
    [22] E.P. Ryan, “Time-optimal feedback control of certain fourth-order systems,” International Journal of Control, vol.26, no.5, pp.675–688, 1977.

    無法下載圖示 本全文未授權公開
    QR CODE