簡易檢索 / 詳目顯示

研究生: 黃育崴
Huang, Yu-Wei
論文名稱: 百葉式太陽集光器在建築日光照明的應用
Application of louvered solar collector in architectural daylighting
指導教授: 鄧敦建
Teng, Tung-Chien
鄭慶民
Cheng, Ching-Min
口試委員: 陳建志
Chen, Chien-Chih
鄧敦建
Teng, Tung-Chien
鄭慶民
Cheng, Ching-min
口試日期: 2022/08/02
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 88
中文關鍵詞: 百葉式太陽集光器日光照明日光重定向光導管
英文關鍵詞: Louvered Solar Collector, Daylighting, Light Duct
研究方法: 個案研究法比較研究
DOI URL: http://doi.org/10.6345/NTNU202201515
論文種類: 學術論文
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種日光導引系統,利用百葉式太陽集光器將日光重定向後導入建築物內部,可應用於日光輔助照明。本論文中提出的日光輔助照明系統主要包含三個部分:第一部分是利用單軸追跡之百葉式集光器將日光重定向到建築物內部天花板。集光器末端安置擴束器,以確保集光器輸出光線的方向能在預期的範圍內。第二部分在導引系統入口上方建立一可收折的短檐,其上具有微結構,能夠避免仰角較大之入射光經重定向後會以接近水平入射建築物而產生眩光。第三部分是透過室內天花板的光導管及擴散板,讓入射日光能更深入室內,並且經由混光後再向地板照射,提升室內整體的採光範圍及均齊度。
    本研究針對百葉式太陽集光器、短檐微結構、室內光導管、擴散板等部件進行優化,以提升整體系統光效率以及室內照明的均齊度。提出的百葉式太陽集光器模型經過優化後以550 nm單頻光光源進行模擬分析,結果顯示其對於入射光仰角容忍度可達 ±1.25°,方位角之容忍度則達 ±80° (維持95%效率以上)。最後將優化後的日光導引系統設置於摩洛哥的朝南建築,並同時考慮該地的直射光與漫射光進行模擬評估,結果顯示建築物內部的採光範圍可達室內7公尺,且全年之平均照度均齊度可達0.64,且最低均齊度大於0.56。

    This paper proposed a daylight guidance system to redirect sunlight into the building through a louvered solar collector for the application of daylight-assisted lighting. It includes three parts. The first part is to use the louvered collectors by means of single-axis tracing to redirect the sunlight to the ceiling of the room in buildings, and a beam expander was attached to the end of the louvered collector to ensure that the light emerging from it can fall within the desired directional range. The second part is to create a retractable short eaves with microstructures to prevent the light coming with a large elevation angle from being redirected into the building in a near-horizontal direction. The third part is to utilize a light duct and a diffuser plate to let the incident sunlight go further into the room and get mixed for the following irradiating the floor, which improves the overall lighting range and uniformity of the room.
    This study optimized components such as louvered solar collectors, short eaves microstructures, indoor light guides, and diffusers to improve the overall light efficiency of the system and the uniformity of indoor lighting. The proposed louvered solar concentrator model was optimized and simulated for a light source with an wavelength of 550 nm. The results show that its tolerance to the incident light elevation angle and the azimuth angle can reach ±1.25° and ±80°, respectively (maintained more than 95% efficiency). Finally, the optimized daylight guidance system model was assumed in a south-facing building in Morocco, and was evaluated in the simulation with considering the local conditions of both the direct light and diffused light. The average uniformity of illuminance can reach 0.64, and the minimum uniformity is greater than 0.56.

    第一章 緒論 1 1.1前言 1 1.2再生能源 2 1.3太陽能的應用 3 1.4集光器 5 1.4.1集光器的光線作用機制 5 1.4.1.1穿透式 5 1.4.1.2反射式 5 1.4.2集光器的輪廓形狀 6 1.4.2.1平面式 7 1.4.2.2球面式 7 1.4.2.3拋物面式 8 1.4.2.4自由曲面 8 1.4.3集光器追跡方式 8 1.4.3.1固定式 9 1.4.3.2追跡式 9 1.5研究動機與目的 10 1.6論文架構 10 第二章 基本理論與文獻回顧 11 2.1 折射定律(Refraction Law/Snell’s Law) 11 2.2 反射定律(Reflection Law) 12 2.3 全內反射(Total Internal Reflection) 12 2.4 圓錐曲線光學性質 13 2.4.1 圓錐曲線反射特性 13 2.4.2 圓錐曲線折射特性 15 2.5 介面表面特性 16 2.5.1 透射(Transmission) 16 2.5.2 反射(Reflection) 16 2.5.3 吸收(absorption) 16 2.6 光度學介紹 17 2.6.1 光通量(Luminous Flux) 17 2.6.2 照度(Illuminance) 18 2.6.3 發光強度(Luminous Intensity) 18 2.6.4 輝度(Luminance) 19 2.7 光效率(Luminous Efficiency) 20 2.8 幾何集中倍率Geometric Concentration Ratio) 20 2.9 均齊度(Uniformity) 21 2.10 集光倍率(Concentration Ratio) 21 2.11 菲涅耳損耗(Fresnel Loss) 21 2.12 太陽光譜 AM 1.5 22 2.13 文獻回顧 24 2.13.1日光環境下的光架(Light Shelf)設計回顧 24 2.13.2用於公共基礎設施應用的高光譜選擇性能量收集太陽能窗 26 2.13.3用於採光和LED系統的微光學結構 28 2.13.4通過陽光與 LED 燈相結合的節能辦公室照明微結構立面 31 2.13.5微結構採光系統在不同氣候區的應用 33 2.13.6陽光重定向微結構和紅外光絕緣的設計與製造 35 2.13.7 Anidolic採光系統的最新研究:高反射塗層材料和時間生物學特性 38 2.13.8結合SPSC的高性能自然採光系統 41 2.13.9平面式太陽能集光器具有免對位全內反射收集器和創新的複合追跡器 43 2.13.10以單軸追跡的高效能平面式日光集光器 45 第三章 設計原理與模型架構 46 3.1設計發想 46 3.2模型結構設計 46 3.2.1拋物面柱狀集光元件 47 3.2.2耦合開口與導光板設計 48 3.2.3削減拋物面柱調整角度容忍度範圍 49 3.2.4拋物面柱狀集光元件堆疊成百葉集光板 50 3.2.5擴束器 51 3.2.6百葉集光板分層排列 52 3.2.7集光器支撐 54 3.2.8追跡方式 54 3.2.8微結構調光短簷 55 3.3室內天花板設計 56 3.4模擬光源設置 56 3.4.1 太陽光源張角 56 第四章 系統模型參數設計與優化 58 4.1系統模型參數設計與優化 58 4.1.1 建築物尺寸設計 58 4.2百葉式太陽集光器 61 4.2.1 百葉式太陽集光器尺寸說明 61 4.2.2拋物面柱狀單體開口大小及導光板階梯厚度驗證 63 4.2.2耦合入口底部多段斜率設計 64 4.2.3調整偏角容忍度峰值 66 4.2.4 擴束器尺寸 67 4.3集光器安裝方位與日光追跡 68 4.3.1追跡系統設計 68 4.3.2朝南集光器傾角 70 4.3.3朝東集光器傾角 71 4.3.4調光短檐設計 72 4.4採光範圍及均齊度提升 73 4.4.1天花板光導管設計 73 4.4.2集光器及光導管增加隔層 75 4.4.3光導管末端擴散板設計 78 4.4.4系統光學效率 80 4.4.5最終系統加入漫射光 82 4.5紅外光反射層 82 4.6窗外可視性模擬 84 第五章 結論與未來展望 85 5.1結論 85 5.2未來展望 85 參考文獻 86

    1. 財團法人台灣綠色生產力基金會,2013非生產性質行業能源查核年報, 2013。
    2. REN21, Renewables 2020 global Status Report, 2020.06.
    3. 尚億新能源http://www.sunenewenergy.com.tw/web/index.php/devicemenu.
    4. 陳密,“影響聚光型太陽電池模組轉換效率因素研究",行政院原子能委員會委託研究計畫研究報告,2012。
    5. Joe Coventry, Charles Andraka“Dish systems for CSP” , Solar Energy, Vol.152,Pages 140-170,2017.
    6. J. H. Karp, E. J. Tremblay, J. E. Ford , “Planar micro-optic solar concentrator ", OPTICS EXPRESS, Vol.18, No.2, pp.1122-1133, 2010.
    7. 「球形玻璃」:太陽能發電新選擇https://www.techbang.com/posts/16193-spherical-glass-the-new-choice-for-solar-power
    8. 太陽能發電與建物整合設計應用
    https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?cnlid=14&id=0000338796_2BO8OXGD8HC24P78R1281
    9. 您真的了解太陽能智能光伏跟蹤器系統嗎?
    https://kknews.cc/tech/nkqzpg.html
    10. A. Kontadakis, A. Tsangrassoulis, L. Doulos 1, and S. Zerefos, “A Review of Light Shelf Designs for Daylit Environments,” Sustainability 10(71), 2018.
    11. Howard, T.C. Daylighting Multistory Office Buildings; North Carolina Alternative Energy Corporation: Raleigh, NC, USA, 1990.

    12. Howard, T.C.; Place, W.; Andersson, B.; Coutiers, P. Variable area light reflecting assemblies (VALRA). In Proceedings of the 2nd International Daylighting Conference, Long Beach, CA, USA, 4–7 November 1986.
    13. Mikhail Vasiliev , Kamal Alameh, and Mohammad Nur-E-Alam, “Spectrally-Selective Energy-Harvesting Solar Windows for Public Infrastructure Applications” ,Applied Sciences, 2018.
    14. Helmut F.O. Mueller, “Micro-optical structures for daylighting and led systems", Renewable Energy and Environmental Sustainability, 2017.
    15. M. Jakubowsky, A. Neyer, H. Müller, “Microstructured Façade Elements for Energy Efficient Office Room Illumination by Sunlight combined with LED Light", in: South African Solar Energy Conference (SASEC2018), 2018.
    16. Helmut F.O. Mueller, “Application of Micro-structured Sunlighting Systems in Different Climatic Zones", Journal of Daylighting 6 (2019) 52-59, 2019.
    17. T.Y. Huang, H. Hocheng, T.H. Chou, W.H. Yang, C.J. Ting, K.Y. Cheng, C.W. Hsieh, “Design and fabrication of sunlight-redirecting and infrared-insulating microstructure", Energy and Buildings Vol. 90 (2015) 114-126,2015.
    18. Friedrich Linharta, Stephen K. Wittkopfa,b, Mirjam Müncha , Jean-Louis Scartezzinia , “Recent Research on Anidolic Daylighting Systems: Highly Reflective Coating Materials and Chronobiological Properties,” Proceedings Volume 7423, Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VI , 2009.
    19. Shih-ChuanYeh , “High performance natural lighting system combined with SPSC,” Renewable Energy, Volume 143, Pages 226-232, 2019
    20. T. C. Teng, W. C. Lai, “Planar solar concentrator featuring alignment-free total-internal-reflection collectors and an innovative compound tracker", Optics Express, Vol.22, pp.A1818-A1834, 2014.
    21. Tun-Chien Teng, Chi-Hsuan Kuo, and Yun-Jhong Li,“Planar solar concentrator composed of stacked waveguides with arc-segment structures and movable receiving assemblies,” Optics express 28(23) , 2020.
    22. 財團法人台灣綠色生產力基金會,節能相關法令執行說明,2012

    下載圖示
    QR CODE