研究生: |
王心妤 Wang, Hsin-Yu |
---|---|
論文名稱: |
石墨烯化中孔洞沸石粒子複合電漿材料於表面增強拉曼之應用 Mesoporous Composites of Graphitized Zeolites and Plasmonic Nanoparticles for Surface-Enhanced Raman Spectroscopy Applications |
指導教授: |
劉沂欣
Liu, Yi-Hsin |
口試委員: | 陳珮珊 陳品銓 |
口試日期: | 2021/07/13 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 中孔洞沸石粒子 、中孔洞氧化石墨烯奈米粒子 、銀奈米粒子 、表面拉曼增強 |
英文關鍵詞: | mesoporous zeolite nanoparticles, mesoporous graphene-oxide nanoparticles, silver nanoparticles, surface Raman enhancement |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202101194 |
論文種類: | 學術論文 |
相關次數: | 點閱:227 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以高表面積 (SBET> 900 m2 / g) 的中孔沸石奈米粒子 (mesoporous zeolite nanoparticles, MZNs) 做為基材,於高溫下 (825-950 °C) 和乙烯氣體進行化學氣相沉積 (chemical vapor deposition, CVD) 反應,並以氮氣等溫吸脫附來鑑定石墨烯化且孔徑均勻的中孔氧化石墨烯奈米粒子 (mesoporous graphene-oxide nanoparticles, MGNs)。界達電位分析證實表面的電荷變化並以不同電性的銀前驅物、合成條件來有效調控奈米粒子之形貌,佐以電子顯微鏡、紫外-可見光吸收光譜、X光粉末繞射來鑑定銀奈米粒子顆粒之大小 (寛6-18奈米、長12-33奈米)。受孔洞限制生長的粒子不僅提供表面電漿熱點,其表面拉曼增強 (surface-enhanced Raman spectroscopy,SERS) 效應可偵測到極低濃度 (10-10 M) 的甲基紫10B 染料 (crystal violet, CV),其穩定性受到氧化石墨烯的作用而提升至七日。目前己成功以三種方式附載於紙基晶片上,未來積極投入濫用藥物結合基質輔助雷射解吸∕電離 (matrix-assisted laser desorption/ionization, MALDI) 雙功能的偵測分析應用。
In this study, mesoporous zeolite nanoparticles (MZNs) with high surface area (SBET> 900 m2/g) were used as the substrates, and chemical vapor deposition (CVD) reaction with ethylene gas was carried out at high temperature (825-950 °C). The isothermal adsorption and desorption of nitrogen was used to identify the mesoporous graphene-oxide nanoparticles (MGNs) with grapheneization and uniform pore size. Zeta potential analysis confirmed the change of surface charge. The silver precursors were introduced with different electrical properties, and conditions of synthesis were effectively controlled the morphology of nanoparticles. Accompanied by electron microscopy, ultraviolet-visible spectroscopy, and X-ray powder diffraction were used to identify the size of silver nanoparticle particles (width 6-18 nm, length 12-33 nm). The growth of particles restricted by pores not only provides surface plasmonic hot spots, but its surface-enhanced Raman spectroscopy (SERS) effect can detect very low concentrations (10-10 M) of methyl violet 10B dye (crystal violet, CV), which could improve stability to seven days by the interaction of graphene oxide. At present, MZNs has been successfully attached to paper-based chips in three ways. In the future, our study will actively be invested in the detection and analysis of drugs of abuse combined with matrix-assisted laser desorption/ ionization (MALDI) dual-function detection and analysis applications.
1. Raman, C. V.; Krishnan, K. S., A New Type of Secondary Radiation. Nature 1928, 121 (3048), 501-502.
2. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974, 26 (2), 163-166.
3. Jeanmaire, D. L.; Van Duyne, R. P., Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84 (1), 1-20.
4. Albrecht, M. G.; Creighton, J. A., Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society 1977, 99 (15), 5215-5217.
5. Willets, K. A.; Van Duyne, R. P., Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry 2007, 58 (1), 267-297.
6. Ding, S.-Y.; You, E.-M.; Tian, Z.-Q.; Moskovits, M., Electromagnetic theories of surface-enhanced Raman spectroscopy. Chemical Society Reviews 2017, 46 (13), 4042-4076.
7. Campion, A.; Kambhampati, P., Surface-enhanced Raman scattering. Chemical Society Reviews 1998, 27 (4), 241-250.
8. Zong, C.; Xu, M.; Xu, L.-J.; Wei, T.; Ma, X.; Zheng, X.-S.; Hu, R.; Ren, B., Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chemical Reviews 2018, 118 (10), 4946-4980.
9. Kim, K.; Han, H. S.; Choi, I.; Lee, C.; Hong, S.; Suh, S.-H.; Lee, L. P.; Kang, T., Interfacial liquid-state surface-enhanced Raman spectroscopy. Nature Communications 2013, 4 (1), 2182.
10. Park, J.-E.; Lee, Y.; Nam, J.-M., Precisely Shaped, Uniformly Formed Gold Nanocubes with Ultrahigh Reproducibility in Single-Particle Scattering and Surface-Enhanced Raman Scattering. Nano Letters 2018, 18 (10), 6475-6482.
11. Yuan, H.; Liu, Y.; Fales, A. M.; Li, Y. L.; Liu, J.; Vo-Dinh, T., Quantitative Surface-Enhanced Resonant Raman Scattering Multiplexing of Biocompatible Gold Nanostars for in Vitro and ex Vivo Detection. Analytical Chemistry 2013, 85 (1), 208-212.
12. Halvorson, R. A.; Vikesland, P. J., Surface-Enhanced Raman Spectroscopy (SERS) for Environmental Analyses. Environmental Science & Technology 2010, 44 (20), 7749-7755.
13. Lai, Y.-H.; Chen, S.-W.; Hayashi, M.; Shiu, Y.-J.; Huang, C.-C.; Chuang, W.-T.; Su, C.-J.; Jeng, H.-C.; Chang, J.-W.; Lee, Y.-C.; Su, A.-C.; Mou, C.-Y.; Jeng, U. S., Mesostructured Arrays of Nanometer-spaced Gold Nanoparticles for Ultrahigh Number Density of SERS Hot Spots. Advanced Functional Materials 2014, 24 (17), 2544-2552.
14. Xia, X.; Rycenga, M.; Qin, D.; Xia, Y., A silver nanocube on a gold microplate as a well-defined and highly active substrate for SERS detection. Journal of Materials Chemistry C 2013, 1 (38), 6145-6150.
15. Wei, H.; Hossein Abtahi, S. M.; Vikesland, P. J., Plasmonic colorimetric and SERS sensors for environmental analysis. Environmental Science: Nano 2015, 2 (2), 120-135.
16. Kambhampati, P.; Child, C. M.; Foster, M. C.; Campion, A., On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory. The Journal of Chemical Physics 1998, 108 (12), 5013-5026.
17. Seo, M. J.; Kim, G. W.; Tsalu, P. V.; Moon, S. W.; Ha, J. W., Role of chemical interface damping for tuning chemical enhancement in resonance surface-enhanced Raman scattering of plasmonic gold nanorods. Nanoscale Horizons 2020, 5 (2), 345-349.
18. Cardinal, M. F.; Vander Ende, E.; Hackler, R. A.; McAnally, M. O.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P., Expanding applications of SERS through versatile nanomaterials engineering. Chemical Society Reviews 2017, 46 (13), 3886-3903.
19. Wang, Y.-W.; Kao, K.-C.; Wang, J.-K.; Mou, C.-Y., Large-Scale Uniform Two-Dimensional Hexagonal Arrays of Gold Nanoparticles Templated from Mesoporous Silica Film for Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry C 2016, 120 (42), 24382-24388.
20. Sanz-Ortiz, M. N.; Sentosun, K.; Bals, S.; Liz-Marzán, L. M., Templated Growth of Surface Enhanced Raman Scattering-Active Branched Gold Nanoparticles within Radial Mesoporous Silica Shells. ACS Nano 2015, 9 (10), 10489-10497.
21. You, H.; Fang, J., Particle-mediated nucleation and growth of solution-synthesized metal nanocrystals: A new story beyond the LaMer curve. Nano Today 2016, 11 (2), 145-167.
22. León-Velázquez, M. S.; Irizarry, R.; Castro-Rosario, M. E., Nucleation and Growth of Silver Sulfide Nanoparticles. The Journal of Physical Chemistry C 2010, 114 (13), 5839-5849.
23. Shirtcliffe, N.; Nickel, U.; Schneider, S., Reproducible Preparation of Silver Sols with Small Particle Size Using Borohydride Reduction: For Use as Nuclei for Preparation of Larger Particles. Journal of Colloid and Interface Science 1999, 211 (1), 122-129.
24. Caswell, K. K.; Bender, C. M.; Murphy, C. J., Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires. Nano Letters 2003, 3 (5), 667-669.
25. Yang, J.; Yin, H.; Jia, J.; Wei, Y., Facile Synthesis of High-Concentration, Stable Aqueous Dispersions of Uniform Silver Nanoparticles Using Aniline as a Reductant. Langmuir 2011, 27 (8), 5047-5053.
26. Agnihotri, S.; Mukherji, S.; Mukherji, S., Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances 2014, 4 (8), 3974-3983.
27. Inagaki, M.; Kaneko, K.; Nishizawa, T., Nanocarbons––recent research in Japan. Carbon 2004, 42 (8), 1401-1417.
28. Vinu, A.; Ariga, K., Preparation of Novel Mesoporous Carbon Materials with Tunable Pore Diameters Using Directly Synthesized AlSBA-15 Materials. Chemistry Letters 2005, 34 (5), 674-675.
29. Yang, H.; Zhao, D., Synthesis of replica mesostructures by the nanocasting strategy. Journal of Materials Chemistry 2005, 15 (12), 1217-1231.
30. Vinu, A.; Hartmann, M., Characterization and microporosity analysis of mesoporous carbon molecular sieves by nitrogen and organics adsorption. Catalysis Today 2005, 102-103, 189-196.
31. van Oss, C. J., A review of: “Active Carbon.” R.C. Bansal, J.B. Donnet and F. Stoeckli; Marcel Dekker, New York, 1988. pp. 482, $135.00. Journal of Dispersion Science and Technology 1990, 11 (3), 323-323.
32. Foley, H. C., Carbogenic molecular sieves: synthesis, properties and applications. Microporous Materials 1995, 4 (6), 407-433.
33. Kyotani, T.; Nagai, T.; Inoue, S.; Tomita, A., Formation of New Type of Porous Carbon by Carbonization in Zeolite Nanochannels. Chemistry of Materials 1997, 9 (2), 609-615.
34. Kyotani, T., Control of pore structure in carbon. Carbon 2000, 38 (2), 269-286.
35. Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B 1999, 103 (37), 7743-7746.
36. Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O., Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. Journal of the American Chemical Society 2000, 122 (43), 10712-10713.
37. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M., Ordered Mesoporous Carbons. Advanced Materials 2001, 13 (9), 677-681.
38. Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R., Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412 (6843), 169-172.
39. Solovyov, L. A.; Zaikovskii, V. I.; Shmakov, A. N.; Belousov, O. V.; Ryoo, R., Framework Characterization of Mesostructured Carbon CMK-1 by X-ray Powder Diffraction and Electron Microscopy. The Journal of Physical Chemistry B 2002, 106 (47), 12198-12202.
40. Graham, E. G.; Macneill, C. M.; Levi-Polyachenko, N. H., REVIEW OF METAL, CARBON AND POLYMER NANOPARTICLES FOR INFRARED PHOTOTHERMAL THERAPY. Nano LIFE 2013, 03 (03), 1330002.
41. Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S.-Y.; Edgeworth, J.; Li, X.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D.; Kang, J.; Park, J.; Ruoff, R. S., Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. ACS Nano 2011, 5 (2), 1321-1327.
42. Reed, J. C.; Zhu, H.; Zhu, A. Y.; Li, C.; Cubukcu, E., Graphene-Enabled Silver Nanoantenna Sensors. Nano Letters 2012, 12 (8), 4090-4094.
43. Zhao, Y.; Xie, Y.; Hui, Y. Y.; Tang, L.; Jie, W.; Jiang, Y.; Xu, L.; Lau, S. P.; Chai, Y., Highly impermeable and transparent graphene as an ultra-thin protection barrier for Ag thin films. Journal of Materials Chemistry C 2013, 1 (32), 4956-4961.
44. Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z., Can Graphene be used as a Substrate for Raman Enhancement? Nano Letters 2010, 10 (2), 553-561.
45. Benevides, J. M.; Overman, S. A.; Thomas Jr, G. J., Raman, polarized Raman and ultraviolet resonance Raman spectroscopy of nucleic acids and their complexes. Journal of Raman Spectroscopy 2005, 36 (4), 279-299.
46. Matousek, P.; Towrie, M.; Ma, C.; Kwok, W. M.; Phillips, D.; Toner, W. T.; Parker, A. W., Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate. Journal of Raman Spectroscopy 2001, 32 (12), 983-988.
47. Martyshkin, D. V.; Ahuja, R. C.; Kudriavtsev, A.; Mirov, S. B., Effective suppression of fluorescence light in Raman measurements using ultrafast time gated charge coupled device camera. Review of Scientific Instruments 2004, 75 (3), 630-635.
48. McCamant, D. W.; Kukura, P.; Yoon, S.; Mathies, R. A., Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods. Review of Scientific Instruments 2004, 75 (11), 4971-4980.
49. Begley, R. F.; Harvey, A. B.; Byer, R. L., Coherent anti‐Stokes Raman spectroscopy. Applied Physics Letters 1974, 25 (7), 387-390.
50. Xie, L.; Ling, X.; Fang, Y.; Zhang, J.; Liu, Z., Graphene as a Substrate To Suppress Fluorescence in Resonance Raman Spectroscopy. Journal of the American Chemical Society 2009, 131 (29), 9890-9891.
51. Yu, X.; Cai, H.; Zhang, W.; Li, X.; Pan, N.; Luo, Y.; Wang, X.; Hou, J. G., Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets. ACS Nano 2011, 5 (2), 952-958.
52. Zhu, J.; Du, H.-f.; Zhang, Q.; Zhao, J.; Weng, G.-j.; Li, J.-j.; Zhao, J.-w., SERS detection of glucose using graphene-oxide-wrapped gold nanobones with silver coating. Journal of Materials Chemistry C 2019, 7 (11), 3322-3334.
53. Chang, H.-J.; Chen, T.-Y.; Zhao, Z.-P.; Dai, Z.-J.; Chen, Y.-L.; Mou, C.-Y.; Liu, Y.-H., Ordered Mesoporous Zeolite Thin Films with Perpendicular Reticular Nanochannels of Wafer Size Area. Chemistry of Materials 2018, 30 (22), 8303-8313.
54. Valencia, C.; Valencia, C. H.; Zuluaga, F.; Valencia, M. E.; Mina, J. H.; Grande-Tovar, C. D., Synthesis and Application of Scaffolds of Chitosan-Graphene Oxide by the Freeze-Drying Method for Tissue Regeneration. Molecules 2018, 23 (10).
55. Al-Gaashani, R.; Najjar, A.; Zakaria, Y.; Mansour, S.; Atieh, M. A., XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceramics International 2019, 45 (11), 14439-14448.
56. Enoki, T.; Takai, K., The edge state of nanographene and the magnetism of the edge-state spins. Solid State Communications 2009, 149 (27), 1144-1150.
57. Joly, V. L. J.; Takahara, K.; Takai, K.; Sugihara, K.; Enoki, T.; Koshino, M.; Tanaka, H., Effect of electron localization on the edge-state spins in a disordered network of nanographene sheets. Physical Review B 2010, 81 (11), 115408.
58. Su, C.; Acik, M.; Takai, K.; Lu, J.; Hao, S.-j.; Zheng, Y.; Wu, P.; Bao, Q.; Enoki, T.; Chabal, Y. J.; Ping Loh, K., Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nature Communications 2012, 3 (1), 1298.
59. Rao, S. S.; Stesmans, A.; Wang, Y.; Chen, Y., Direct ESR evidence for magnetic behavior of graphite oxide. Physica E Low-Dimensional Systems and Nanostructures 2012, 44, 1036.
60. Wang, B.; Fielding, A. J.; Dryfe, R. A. W., Electron Paramagnetic Resonance Investigation of the Structure of Graphene Oxide: pH-Dependence of the Spectroscopic Response. ACS Applied Nano Materials 2019, 2 (1), 19-27.
61. Wang, B.; Fielding, A. J.; Dryfe, R. A. W., Electron Paramagnetic Resonance as a Structural Tool to Study Graphene Oxide: Potential Dependence of the EPR Response. The Journal of Physical Chemistry C 2019, 123 (36), 22556-22563.
62. Komeily-Nia, Z.; Chen, J.-Y.; Nasri-Nasrabadi, B.; Lei, W.-W.; Yuan, B.; Zhang, J.; Qu, L.-T.; Gupta, A.; Li, J.-L., The key structural features governing the free radicals and catalytic activity of graphite/graphene oxide. Physical Chemistry Chemical Physics 2020, 22 (5), 3112-3121.
63. Dellinger, B.; Lomnicki, S.; Khachatryan, L.; Maskos, Z.; Hall, R. W.; Adounkpe, J.; McFerrin, C.; Truong, H., Formation and stabilization of persistent free radicals. Proceedings of the Combustion Institute 2007, 31 (1), 521-528.
64. Savchenko, D.; Vorliček, V.; Kalabukhova, E.; Sitnikov, A.; Vasin, A.; Kysil, D.; Sevostianov, S.; Tertykh, V.; Nazarov, A., Infrared, Raman and Magnetic Resonance Spectroscopic Study of SiO2:C Nanopowders. Nanoscale Research Letters 2017, 12 (1), 292.
65. Jorio, A.; Ferreira, E. H. M.; Moutinho, M. V. O.; Stavale, F.; Achete, C. A.; Capaz, R. B., Measuring disorder in graphene with the G and D bands. physica status solidi (b) 2010, 247 (11-12), 2980-2982.
66. Wang, B.; Likodimos, V.; Fielding, A. J.; Dryfe, R. A. W., In situ Electron paramagnetic resonance spectroelectrochemical study of graphene-based supercapacitors: Comparison between chemically reduced graphene oxide and nitrogen-doped reduced graphene oxide. Carbon 2020, 160, 236-246.
67. Paratala, B. S.; Jacobson, B. D.; Kanakia, S.; Francis, L. D.; Sitharaman, B., Physicochemical Characterization, and Relaxometry Studies of Micro-Graphite Oxide, Graphene Nanoplatelets, and Nanoribbons. PLOS ONE 2012, 7 (6), e38185.
68. Majchrzycki, Ł.; Augustyniak-Jablokow, M.; Strzelczyk, R.; Maćkowiak, M., Magnetic Centres in Functionalized Graphene. Acta Physica Polonica A 2015, 127, 540-542.
69. Yang, C.-m.; Liu, P.-h.; Ho, Y.-f.; Chiu, C.-y.; Chao, K.-j., Highly Dispersed Metal Nanoparticles in Functionalized SBA-15. Chemistry of Materials 2003, 15 (1), 275-280.
70. Hu, B.; Sun, D.-W.; Pu, H.; Wei, Q., Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method. Talanta 2020, 217, 120998.
71. Chen, X.; Nguyen, T. H. D.; Gu, L.; Lin, M., Use of Standing Gold Nanorods for Detection of Malachite Green and Crystal Violet in Fish by SERS. Journal of Food Science 2017, 82 (7), 1640-1646.
72. Zhang, D.; Liang, P.; Yu, Z.; Huang, J.; Ni, D.; Shu, H.; Dong, Q.-m., The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects. Sensors and Actuators B: Chemical 2018, 256, 721-728.
73. 張云柔(2019)。中孔洞沸石奈米粒子之鋰修飾以及石墨化之合成、鑑定及應用(未出版碩士論文)。國立臺灣師範大學,臺北市。