簡易檢索 / 詳目顯示

研究生: 熊偉丞
Hsiung, Wei-Chen
論文名稱: 沉積TiAlN硬質薄膜提升刀具切削性能之研究
Deposited TiAlN Hard Film to Improve Cutting Performance
指導教授: 郭金國
Kuo, Chin-Guo
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 75
中文關鍵詞: 氮化鋁鈦田口實驗磁控濺鍍
英文關鍵詞: TiAlN, Taguchi, Magnetron Sputtering
DOI URL: https://doi.org/10.6345/NTNU202203932
論文種類: 學術論文
相關次數: 點閱:257下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化物硬質薄膜,高硬度,高化學穩定性,廣用於航太產業、模具加工業、機械業、電子業。可有效提昇刀具,模具的耐磨耗性,降低摩擦係數,有效延長刀具壽命降低生產成本。
    本研究目的為濺鍍披覆TiAlN高密度薄膜,提升捨棄式瓷金刀具切削能力。應用反應共濺鍍(co-sputter),將高密度TiAlN硬質薄膜分別沉積於瓷金刀具及玻璃基材。應用田口實驗設計,L9 (34)直交表,配合變異數分析,反應共濺鍍參數,包括: Ti DC power, Al DC power, N2/(Ar+N2)flow ratio 及Substrate bias。固定基材溫度(200oC)、工作壓力(3×10-3) 、沉積時間(15 min)。沉積TiAlN薄膜的厚度介於316.42 nm~442.59 nm,分析TiAlN薄膜結晶品質(X-Ray)與結晶相,顯微鏡(SEM)觀察表面微結構及氮化物薄膜成份(EDS)。量測薄膜微硬度,楊氐模數及摩擦係數。將鍍層刀具進行鉻鉬合金鋼(SCM415)乾銑削,分析工件表面粗糙度及刀腹磨耗(flank wear)。應用灰關聯分析理論,獲得多重品質特性最佳TiAlN薄膜沉積參數。經實驗驗証顯示,工件表面粗糙度、刀腹磨耗及薄膜硬度改善率分別為26.08%, 26.96%及14.74%。

    Transition metal nitride films have been studied extensively because of their high hardness, excellent wear resistance, high oxidation resistance, good thermochemical stability, lower friction coefficient, and the cutter life was extended.
    In this study, the optimal settings for the deposition parameters of TiAlN thin films that are deposited on cermet cutting tools and glass substrates using direct current (DC) reactive sputtering. The Taguchi method with an L9 (34) orthogonal array, signal-to-noise ratio and analysis of variance were employed to study the performance characteristics. The Taguchi method was used to design a robust experiment. Then deposition parameters of the TiAlN hard films, including Ti DC power, Al DC power, N2/(Ar+N2) flow ratio and Substrate bias were optimized with reference to structure of the films, dry milling tests of SCM415 alloy steel and wear tests of TiAlN films. The effects of the deposition parameters on the structure, morphology and compositional analysis of the TiAlN films were analyzed using scanning electron microscopy (SEM), X-ray diffraction. The TiAlN films with thickness of 316.42 nm~442.59 nm were deposited. Findings the grey-based Taguchi analysis show that the improvement in surface roughness is 26.08%, in flank wear is 26.96%, and in films hardness is 14.74%. The optimum TiAlN coating with the highest hardness, elastic modulus, and H/E values.

    摘 要 i Abstract ii 目 次 iii 表次 vi 圖次 vii 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 4 第二章 文獻回顧 5 2.1奈米複合材料(Nanocomposite) 5 2.1.1奈米材料性質 5 2.1.2奈米複合薄膜 6 2.2電漿原理 8 2.2.1電漿計算距離 9 2.2.2電漿放電 10 2.3物理氣相沉積法 11 2.3.1陰極電弧沉積法 14 2.3.2陰極電弧的優缺點 14 2.4濺鍍(Sputtering) 15 2.4.1磁控濺鍍(Magnetron Sputtering Deposition) 16 2.4.2反應濺鍍(Reactive sputtering) 18 2.5薄膜沉積理論 19 2.5.1 薄膜沉積現象 19 2.5.2 薄膜微觀結構 21 2.6 氮化物硬質薄膜的發展與研究 23 2.6.1本質性氮化物硬膜 25 2.6.2 非本質性氮化物薄膜 25 2.7田口方法實驗規劃法 26 2.7.1 品質損失函數 26 2.7.2直交表實驗設計 27 2.7.3信號雜訊比之特性 27 2.7.4變異數分析(Analysis of Variance) 28 2.8灰色系統理論 29 第三章 研究方法 32 3.1 實驗目的 32 3.1.1濺鍍參數設計 34 3.1.2 基材前處理 35 3.2直流磁控濺鍍流程 36 3.2.1直流磁控濺鍍設備 36 3.3實驗材料 38 3.3.1 拋棄式銑刀片 38 3.3.2 玻璃試片 38 3.3.3 靶材 38 3.3.4 工作氣體 38 3.3.5 工件材料 38 3.4濺鍍步驟 39 3.5銑削程序 39 3.6 薄膜分析儀器 42 3.6.1表面輪廓儀 42 3.6.2 晶體結構分析 43 3.6.3低真空電子顯微鏡 45 3.6.4 場發射掃描式電子顯微鏡(FE-SEM) 46 3.7 薄膜機械性質儀器 48 3.7.1 動態微小硬度計 48 3.7.2 表面粗糙度量測儀 49 3.7.3 工具顯微鏡 50 3.7.4 奈米壓痕分析儀(nano-indentation) 51 3.7.5球對盤磨耗測試儀 52 第四章 結果與討論 53 4.1 TiAlN硬質薄膜鍍膜銑削鉻鉬合金 53 4.1.1 工件表面粗糙度 53 4.1.2 刀腹磨耗 55 4.2 田口-灰關聯最佳化分析 57 4.3最佳化驗證 59 4.4 表面結構 60 4.4.1 刀腹磨耗微結構 60 4.4.2工件表面粗糙度之比較 62 4.4.3 TiAlN薄膜硬度、摩擦係數、楊氏係數及膜厚 64 4.5 TiAlN薄膜結構分析 66 4.5.1 XRD晶體結構及EDS成份分析 66 4.5.2 TiAlN薄膜橫斷面之形貌 67 4.5.3 TiAlN薄膜表面之形貌 68 4.5.4 奈米壓痕薄膜分析 70 第五章 結論與建議 71 參考文獻 72

    [1] Harish C. Barshilia, K. Yogesh, K.S. Rajam, “Deposition of TiAlN coatings using reactive bipolar-pulsed direct current unbalanced magnetron sputtering”, Vacuum, Vol. 83, pp. 427–434, 2009.
    [2] K. Holmberg, A. Matthews,Coating Tribology: Properties, Mechanisms,
    Techniques and Applications in Surface Engineering,Oxford, 2009.
    [3] M. Van Stappen, L.M. Stals, M. Kerkhofs, C. Quaeyhaegens,” State of the art for the industrial use of ceramic PVD coatings”, Surface Coating Technology, Vol.74–75, pp. 629 ,1995.
    [4]鄭尹華,“延性鑄鐵披覆無電鍍鎳及PVD-(TiAlN/ZrN)之表面性質研究” 大同大學,碩士論文,2010。
    [5]黃東浩,“陰極電弧沈積法披覆CrNCr(N,O)複合層之製程與特性研究”,大同大學,碩士論文,2006。
    [6]王仁宗,“磁控濺鍍沉積含鈦類鑽碳膜提昇刀具切削性能之研究”,碩士論文,龍華科技大學工程所,2014。
    [7] HelmerssonU., Todorova,S.,Barnerr,S. A., Sundgren,J. ‐E.,Markert,L. C.,Greene,J.E."Growth of single‐crystal TiN/VN strained‐layer superlattices with extremely high mechanical hardness,"Journal of Applied Physics, Vol.62, pp.481, 1987.
    [8]馬遠榮,“低微奈米材料”,科學發展,77頁,382期,2004年。
    [9]洪敏雄,王星豪,劉品均,施佑蓉,材料科學與工程第三版 , 高立圖
    書有限公司 , 2005。
    [10] I. W. Park, D. S. Kang, J. J. Moore, S. C. Kwon, J. J. Rha, K. H. Kim, “Microstructures, mechanical properties, and tribological behaviors of Cr–Al–N, Cr–Si–N, and Cr–Al–Si–N coatings by a hybrid coating system”, Surface and Coatings Technology, Vol. 201, pp. 5223–522, 2007.
    [11]黃清添,“析出製程參數對AA7005 鋁擠型合金機械性質與抗應力腐蝕之影響”,國立台灣科技大學,碩士論文,2003。
    [12] S. Bhaduri, and S. B. Bhaduri, “ Recent Development in Ceramic Nano-composites ”, JOM, January, pp.44-51, 1998.
    [13]陳偉令,“TiAlSiN奈米複合塗層之高溫氧化研究”,大同大學,碩士論文,2009。
    [14]劉旻忠,“射頻濺鍍紫外光氧化薄膜之研究”,國立中央大學,碩士論文,2000。
    [15] 莊達人,VLSI製造技術,高立出版,2013。
    [16] 黃東浩,“利用陰極電弧離子製程披覆Cr(N,O)/CrN複合鍍膜之微結構及特性研究”,大同大學,碩士論文,2006。
    [17] 鍾永文,“物理蒸鍍氮化鉻鍍膜於碳化鎢基材高溫氧化性能之研究",碩士論文,國立高雄第一科技大學,碩士論文,2003。
    [18] 陳建任,“PVD/CVD 真空鍍膜設備專題研究”,高雄:金屬工業
    中心,1999。
    [19]S. M. Rossnagel,"Handbook of Plasma Processing Technology, Noyes Publications, Park Ridge", New Jersey, U.S.A., 1982.
    [20] F. Shinoki, A. Itoh, "Mechanism of rf reactive sputtering", Journal of Applied Physics, Vol.46, pp.3381-3384, 1975.
    [21] G. Lemperière, J. M. Poitevin, "Influence of the nitrogen partial pressure onthe properties of d.c.-sputtered titanium and titanium nitride films ", Thin Solid Films, Vol.111, pp.339-349, 1984.
    [22] M. Yoshitake, K. Takiguchi, Y. Suzuki, S. Ogawa, "Effects of oxygen pressure in reactive ion beam sputter deposition of zirconium oxides", Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, Vol.6, pp.2326-2332, 1988.
    [23] S. M. Rossnagel et al., Handbook of Plasma Processing Technology, NoyesPublications, Park Ridge, New Jersey, U.S.A.,1989.
    [24] J. Venables, “Nucleation and growth of thin films,” Reports on Progress in Physics ,Vol. 47, 399-459, 1984.
    [25] P.B. Barna, M. Adamik, “Fundamental structure forming phenomena of polycrystalline films and the structure zone models,” Thin Solid Films, Vol. 317 , pp.27–33, 1998
    [26] John A. Thornton, “ Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings”, Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, Vol. 11(4), p666-670, 1974.
    [27] J. Musil, “Hard and superhard nanocomposite coatings”, Surface Coating Technol. Vol.125, pp.322-330,2000.
    [28] M. Zhou, Y. Makino, M. Nose, K. Nogi,” Phase transition and properties of Ti–Al–N thin films prepared by r.f.-plasma assisted magnetron sputtering”, Thin Solid Films, Vol.339, pp.203-208, 1999.
    [29] S. PalDey, S. C. Deevi, “Single layer and multilayer wear resistant coatings of (Ti,Al)N: A review”, Materials Science and Engineering, Vol.342, pp.58-79,2003.
    [30] J. Musil, H. Hruby, “Superhard nanocomposite Ti1−xAlxN films prepared by magnetron sputtering”Thin Solid Films, Vol.365, pp.104-109, 2000.
    [31] K. Singh, P.K. Limaye, N.L. Soni, A.K. Grover, R.G. Agrawal, A.K.
    Suri, “Wear studies of (Ti–Al) N coatings deposited by reactive magnetron sputtering”, Wear, Vol.258, pp.1813-1824, 2005.

    [32] L. U. Chunsheng, Y. W. Mai and Y. G. Shen, J. Mater., "Recent advances on understanding the origin of superhardness in nanocomposite coatings", Journal of Materials Science, Vol.41 ,pp.937-950, 2006.
    [33] L. U. Chunsheng, Y. W. Mai and Y. G. Shen, J. Mater., "Recent advances on understanding the origin of superhardness in nanocomposite coatings", Journal of Materials Science, Vol.41, pp.937-950, 2006.
    [34]Y. S. Li, S. Shimada, H. Kiyono, A. Hirose, "Synthesis of Ti–Al–Si–N nanocomposite films using liquid injection PECVD from alkoxide precursors", Acta Materialia ,Vol.54, pp. 2041-2048, 2006.
    [35] S. Veprek, P. Karvankova, M. G. J. Veprek-Heijman, J. Vac., "Different approaches to superhard coatings and nanocomposites", Thin Solid Films ,Vol.476, pp.1-29, 2005.
    [36] 王栢村,電腦輔助工程分析之實務與應用,全華科技圖書股份有限公司,民90 年。
    [37] 李輝煌,田口方法—品質設計的原理與實務,高立圖書公司,2000。
    [38] 黃冠維,”以灰關聯分析方法求解多屬性決策問題”,成功大學,
    碩士論文,2006。
    [39] 汪建民主編,“材料分析”中國材料科學學會,民87。
    [40] Arun K. Sikder and Ashok Kumar, “Superhard Coatings in C-B-N System: Growth and Characterization”, Handbook of Thin Films Materials, Vol. 2,pp. 115-190, 2001.
    [41] Chapman,B.,Glow Discharge Processes, New York: John Wiley &Sons,
    1-432(1980).
    [42] 郭金國、陳漢龍,”一維奈米線製程及介紹”,製造科技,pp.26-30,
    第221期,2008.

    無法下載圖示 本全文未授權公開
    QR CODE