簡易檢索 / 詳目顯示

研究生: 宋旻翰
Song, Min-Han
論文名稱: 具最佳化差動驅動模式設計之智慧型磁浮軸承控制系統
Intelligent Magnetic Bearing Control System with Optimal Differential Driving Mode Design
指導教授: 陳瑄易
Chen, Syuan-Yi
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 85
中文關鍵詞: 差分進化演算法類神經網路主動式磁浮軸承定位控制差動驅動模式
英文關鍵詞: Differential Evolution Algorithm, Neural Network, Active Magnetic Bearings, Positioning Control, Differential Driving Mode
DOI URL: https://doi.org/10.6345/NTNU202205108
論文種類: 學術論文
相關次數: 點閱:167下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於磁浮軸承能有效減少系統因為摩擦力所產生之磨耗、震動、噪音與能量損失…等問題,已被廣泛的利用在各種應用之中。然而由於磁浮軸承系統具有高度非線性與時變之控制特性,因此必須針對磁浮軸承發展具優異強健性之控制系統以達到良好之控制性能。
    為了達到非線性磁浮軸承系統之精密定位與追蹤控制功能,本論文首先提出遞迴式小波類神經網路(Recurrent Wavelet Neural Network, RWNN)控制器來控制磁浮軸承系統的轉子位置。雖然控制器之參數值可經由負梯度下降法進行線上學習,但不適當之參數初始值會使得線上學習落入局部最佳值,限制了控制性能。有鑑於此,本論文進一步提出最佳化遞迴式小波類神經網路(Optimal Recurrent Wavelet Neural Network, ORWNN),運用適應性差分進化演算法(Adaptive Differential Evolution, ADE)來優化網路參數初始值。由實驗結果可知,優化後的遞迴式小波類神經網路確實可得到更佳之控制效果。
    此外,本論文以利用適應性差分進化演算法最佳化差動驅動模式中之偏置電流(Bias Current, io)之概念,提出具最佳化差動驅動模式之遞迴式小波類神經網路(Optimal Recurrent Wavelet Neural Network with Differential Driving Mode, ORWNN-DDM )控制器,以進一步降低磁浮軸承系統之耗能。最後由實驗可知,本論文所提出之ORWNN-DDM控制器確實可在達到良好定位控制情況下,同時達到降低能量消耗之效果。

    In recent years, magnetic bearings (MB) with noncontact and frictionless characteristics have been widely applied in various kinds of applications. However, since the MB systems are with highly nonlinear and time-varying control characteristics, it is very important to develop the robust controllers for MB to achieve favorable control performances.
    To achieve precise positioning and tracking control performances of the nonlinear MB control system, a recurrent wavelet neural network (RWNN) controller is firstly proposed to control the position of the rotor in this study. Though the network parameters including connective weights, translations and dilations of the RWNN controller can be adjusted online through the gradient descent method, they may reach the local optimal solutions due to the inappropriate initial values. Therefore, an optimal RWNN (ORWNN) controller with adaptive differential evolution (ADE) is further proposed, in which the initial network parameters are optimized via the ADE algorithm. From the experimental results, the tracking performances of the ORWNN are much improved compared with the ones of RWNN.
    In addition, the ADE algorithm is used to optimize the bias current of the differential drive mode system for saving energy consumption. It is called ORWNN-DDM controller in this study. Experimental results demonstrate the high-accuracy control and significant energy saving performances of the proposed ORWNN-DDM controlled MB positioning system.

    摘 要 i ABSTRACT iii 誌 謝 v 目 錄 vi 圖 目 錄 viii 表 目 錄 xi 第一章 緒論 1 1.1研究背景與動機 1 1.2文獻探討 2 1.3研究目的 4 1.4研究方法 5 1.5研究架構 8 第二章 磁浮軸承控制系統實驗平台介紹 9 2.1磁浮軸承的結構與運作原理 9 2.2數位訊號處理器 10 2.3磁浮軸承動態分析 12 2.4實驗平台設計 13 2.5數位訊號處理器軟體實現規劃 18 第三章 基於遞迴式小波類神經網路之主動式磁浮軸承控制系統 20 3.1遞迴式小波類神經網路 20 3.1.1遞迴式小波類神經網路前饋學習計算演算法 20 3.1.2遞迴式小波類神經網路倒傳遞修正學習演算法 23 3.2 遞迴式小波類神經網路主動式磁浮軸承控制系統 25 3.3實驗結果與討論 25 第四章 基於具最佳化小波函數之遞迴式小波類神經網路主動式磁浮軸承控制系統 35 4.1差分進化演算法 35 4.1.1傳統差分進化演算法 35 4.1.2適應性差分進化演算法 39 4.2最佳化小波函數架構設計 41 4.3 最佳化遞迴式小波類神經網路磁浮軸承控制系統 43 4.4 實驗結果與討論 44 第五章 基於具最佳化差動驅動模式之遞迴式小波類神經網路主動式磁浮軸承控制系統 50 5.1 基於Elman類神經網路之磁浮軸承系統模型 50 5.1.1 Elman類神經網路前饋計算演算法 50 5.1.2 Elman類神經網路倒傳遞修正學習演算法 53 5.2最佳化偏置電壓架構設計 54 5.3具最佳化偏置電流之磁浮軸承控制系統 57 5.4實驗結果與討論 58 第六章 結論與未來展望 74 6.1 結論 74 6.2 未來展望 76 參考文獻 78 自 傳 85 學術成就 85

    [1] G. Schweitzer, H. Bleuler, and A. Traxler, Active Magnetic Bearings: Basics, Properties, and Applications of Active Magnetic Bearings. Zurich, Switzerland: vdf Hochschulverlag, 1994.
    [2] Y. Le, J. Fang, and K. Wang, “Design and optimization of a radial magnetic bearing for high-speed motor with flexible rotor,” IEEE Trans. Magnetics, vol. 51, no. 6, June 2015.
    [3] E. A. Knoth and J. P. Barber, “Magnetic repulsion bearings for turbine engines,” IEEE Trans. Magn., vol. 24, no. 6, pp. 3141-3143, Nov. 1998.
    [4] S. Mukoyama, T. Matsuoka, H. Hatakeyama, H. Kasahara, M. Furukawa, K. Nagashima, M. Ogata, T. Yamashita, H. Hasegawa, K. Yoshizawa, Y. Arai, K. Miyazaki, S. Horiuchi, T. Maeda, and H. Shimizu, “Test of REBCO HTS magnet of magnetic bearing for flywheel storage system in solar power system,” IEEE Trans. Applied Superconductivity, vol. 25, no. 3, June 2015.
    [5] A. H. Pesch, A. Smirnov, O. Pyrhonen and J. T. Sawicki, “ Magnetic bearing spindle tool tracking through μ-synthesis robust control,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 3, pp. 1448 - 1457, June 2015.
    [6] F. J. Lin, S. Y. Chen and M. S. Huang, “Tracking control of thrust active magnetic bearing system via Hermite polynomial-based recurrent neural network,” IET Electric Power Applications, vol. 4, no. 9, pp. 701-714, 2010.
    [7] C. M. Huang, M. S. Chen, and J. Y. Yen, “Adaptive Nonlinear Control of Repulsive Maglev Suspension Systems,” IEEE International Conference on Control Applications, vol. 2, pp. 1734-1739, 1999.
    [8] A. Bittar and R. M. Sales, “H2 and H∞ Control for Maglev Vehicles,” IEEE Control Systems Magazine, pp. 18-25, 1998.
    [9] Y. Lu and J. S. Chen, “Design of a Perturbation Estimator Using The Theory of Variable-Structure Systems and Its Application to Magnetic Levitation Systems,” IEEE Transactions on Industrial Electronics, vol. 42, no. 3, pp. 281-289, June 1995.
    [10] F. J. Lin, S. Y. Chen and K. K. Shyu, “Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system,” IEEE Trans. Neural Networks, vol. 20, no. 6, Jun 2009.
    [11] F. J. Lin, K. H. Tan, D. Y. Fang and Y. D. Lee, “Intelligent controlled three-phase squirrel-cage induction generator system using wavelet fuzzy neural network for wind power,” IET Renewable Power Generation, July 2012.
    [12] F. J. Lin and P. H. Chou, “Self-constructing Sugeno type adaptive fuzzy neural network for two-axis motion control system,” Journal of the Chinese Institute of Engineers, vol. 30, No. 7, pp. 1153-1166 , 2007.
    [13] A. M. Mohamed, F. P. Emad, “Conical Magnetic Bearings with Radial and Thrust Control”, Proceedings of the IEEE Conference on Decision and Control Including The Symposium on Adaptive Processes, vol. 1,554-561,1989.
    [14] S. Fukata and S. Matsuoka, “Control System and Dynamics of Cone Shaped Magnetic Bearings Actuated by Five Electromagnets”, Fourth International Symposium on Magnetic Bearings, 245-250, 1994.
    [15] M. N. Sahinkaya and A. E. Hartavi, “Variable Bias Current in Magnetic Bearings for Energy Optimization,” IEEE Trans.Magnetics, vol. 43, no. 3, March 2007.
    [16] H. C. Chen, “Optimal fuzzy PID controller design of an active magnetic bearing system based on adaptive genetic algorithms,” IEEE Machine Learning and Cybernetics, vol. 4, 12-15 July 2008.
    [17] R. P. JastrzĊbski, “Signal-based H∞ optimal control for AMB system based on genetic algorithm,” IEEE Control and Automation, 9-11 Dec. 2009.
    [18] P. V. S. Sobhan, G. V. N. Kumar and J. Amarnath, “Rotor Levitation by Active Magnetic Bearings Using Fuzzy Logic Controller,” IEEE Industrial Electronics, Control & Robotics, 27-29 Dec. 2010.
    [19] F. J. Lin, S. Y. Chen and M. S. Huang, “Intelligent double integral sliding-mode control for five-degree-of-freedom active magnetic bearing system,” IET Control Theory & Applications, vol. 5, no.11, p. 1287 – 1303, 21 July 2011.
    [20] B. Han, S. Zheng, Y. Wang and J. Cheng, “A FEM-Based Method Dynamic Analysis of a Thrust Magnetic Bearing with Permanent Magnet Bias,” IEEE Instrumentation and Control Technology, 11-13 July 2012.
    [21] S. C. Chen, V. S. Nguyen, D. K. Le and Ming-Mao Hsu, “ANFIS Controller for an Active Magnetic Bearing System,” IEEE Fuzzy Systems, 7-10 July 2013.
    [22] A. Smirnova, A. Peschb, O. Pyrhönena and J. T. Sawickib, “Implementation of energy saving AMB control through smart switching bias current,” IEEE Power Electronics and Applications, 26-28 Aug. 2014.
    [23] S. C. Chen, V. S. Nguyen and D. K. Le, “An Online Trained Adaptive Neural Network Controller for an Active Magnetic Bearing System,” International Symposium on Computer, Consumer and Control, pp. 741– 744, 10-12 June 2014.
    [24] F. J. Lin, S. Y. Chen and M. S. Huang, “Tracking control of thrust active magnetic bearing system via Hermite polynomial-based recurrent neural network,” IET Electr. Power, vol. 4, no. 9, pp. 701– 714, Appl. 2010.
    [25] Q. Zhang and A. Benveniste, “Wavelet networks,” IEEE Trans. Neural Networks, vol. 3, no. 6, pp. 889–898, November 1992.
    [26] N. M. Pindoriya, S. N. Singh and S. K. Singh, “An adaptive wavelet neural network-based energy price forecasting in electricity markets,” IEEE Trans. Power System, vol. 23, no. 3, pp. 1423-1431, August 2008.
    [27] S. K. Jain and S. N. Singh, “Low-order dominant harmonic estimation using adaptive wavelet neural network,” IEEE Trans. Industrial Electronics, vol. 61, no. 1, pp. 428-434, January 2014.
    [28] M. A. Khan, M. N. Uddin and M. A. Rahman, “A novel wavelet-neural-network-based robust controller for IPM motor Drives,” IEEE Trans. Industry Applications, vol. 49, no. 5, pp. 2341-2350, September/October 2013.
    [29] H. Zhao, S. Gao, Z. He, X. Zeng, W. Jin and T. Li, “Identification of nonlinear dynamic system using a novel recurrent wavelet neural network based on the pipelined architecture,” IEEE Trans. Industrial Electronics, vol. 61, no. 8, pp. 4171-4180, August 2014.
    [30] R. Storn and K. Price, “Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim., vol. 11, no. 4, pp. 341-359, 1997.
    [31] F. Dib and I. Boumhidi, “Optimal H∞ control without reaching phase with the differential evolution PID based on PSS for multi-machine power system,” IEEE Intelligent Systems and Computer Vision Conf. ISCV, Sidi, Fez, Morocco, March 25-26, 2015.
    [32] A. Slowik, “Application of an adaptive differential evolution algorithm with multiple trial vectors to artificial neural network training”, IEEE Trans. Indust. Electron., vol. 58, no. 8, pp. 3160-3167, 2011.
    [33] P. Rocca, G. Oliveri and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Anten. and Propagat. Magaz., vol. 53, no. 1, pp. 38-49, 2011.
    [34] A. K. Qin, V. L. Huang and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation for global numerical optimization,” IEEE Trans. Evolutionary Computation, vol. 13, no. 2, pp. 398-416, April 2009.
    [35] W. P. Lee, C. W. Chien and W. T. Cai, “Improving the performance of differential evolution algorithm with modified mutation factor,” Journal of Advanced Engineering, vol. 6, no. 4, pp. 255-261, October 2011.

    [36] F. J. Lin, S. Y. Chen and Y. C. Hung, “Field-programmable gate array-based recurrent wavelet neural network control system for linear ultrasonic motor,” IET Electric Power Applications, vol. 3, Iss. 4, pp. 298– 312, July 2009.
    [37] F. J. Lin, S. Y. Chen, K. K. Shyu and Y. H. Liu, “Intelligent Complementary Sliding-Mode Control for LUSMs-Based X-Y-Ө Motion Control Stage,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 57, no. 7, July 2010.
    [38] F. J. Lin, H. J. Hsieh and P. H. Chou, “Tracking control of a two-axis motion system via a filtering-type sliding-mode control with radial basis function network,” IET Control Theory and Applications, vol. 4, no. 4, pp. 655– 671, 2010.
    [39] 張永康, 張維恩, 蘇彤蘤, “應用雙演化演算法於無人飛行載具結構最佳化設計之研究,” 中華民國航太學會學術研討會, November 30, 2013.
    [40] “以雙演化策略為基礎的差分演化演算法,” TOPCO崇越論文大賞, 2009.
    [41] 李維平, 簡宛柔, “運用多群協同改良式差分演化演算法,”
    International Conference on Advanced Information Technologies, 2010.
    [42] F. J. Lin, L. T. Teng and H. Chu, “Modified Elman neural network controller with improved particle swarm optimisation for linear synchronous motor drive,” IET Electric Power Applications, vol. 2, no. 3, pp 201-214, May 2008.
    [43] H. W. Ge, F. Qian, Y. C. Liang, W. L. Du and L. Wang, “Identification and control of nonlinear systems by a dissimilation particle swarm optimization-based Elman neural network,” ELSEVIER Real World Applications, vol. 9, no. 4, Sept 2008.

    下載圖示
    QR CODE