簡易檢索 / 詳目顯示

研究生: 張政宏
Chang, Cheng-Hung
論文名稱: 不同劑量缺血預處理對蹲舉表現之影響
The effects of different doses of ischemic preconditioning on squat performance
指導教授: 鄭景峰
Cheng, Ching-Feng
口試委員: 郭堉圻
Kuo, Yu-Chi
周峻忠
Chou, Chun-Chung
鄭景峰
Cheng, Ching-Feng
口試日期: 2022/08/16
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 83
中文關鍵詞: 血流阻斷阻力訓練訓練量熱身活動
英文關鍵詞: blood flow occlusion, resistance training, training volume, warm up
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201282
論文種類: 學術論文
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:探討不同劑量缺血預處理 (ischemic preconditioning, IPC) 對於阻力訓練經驗者蹲舉運動表現之影響。方法:本研究共招募12名成年男性。每位受試者先進行控制處理 (CON),接著以隨機交叉平衡次序方式,分別進行三種實驗處理,包括40分鐘 (IPC40)、20分鐘 (IPC20) 和偽處理 (SHAM),其中IPC40為交替加壓雙側大腿220 mmHg,進行4循環5分鐘的缺血與5分鐘的再灌注,而IPC20則為2個循環,SHAM則為20 mmHg。實驗處理結束後,受試者須進行3組70%1RM的蹲舉至衰竭測驗。蹲舉過程中,計算反覆次數和訓練量,以及使用測力板和位移計蒐集相關動力學指標,並以近紅外線光譜儀檢測肌肉氧飽和度。結果:蹲舉時的反覆次數、訓練量、動力學指標和肌肉氧飽和度,在4種處理之間均無顯著差異。不過,在最大速度方面,IPC40、SHAM與CON的第二、三組均顯著低於第一組 (第一組 vs. 第二組 vs. 第三組, IPC40: 0.96 ± 0.12 vs. 0.91 ± 0.13 vs. 0.89 ± 0.11 m/s, SHAM: 0.95 ± 0.09 vs. 0.89 ± 0.10 vs. 0.86 ± 0.10 m/s, CON: 0.98 ± 0.12 vs. 0.89 ± 0.12 vs. 0.84 ± 0.12 m/s, p < .05),而IPC20則在各組之間無顯著差異。在含氧血紅素變化率方面,IPC20與CON的第二、三組顯著高於第一組 (第一組 vs. 第二組 vs. 第三組, IPC40: -17.2 ± 7.9 vs. -14.7 ± 7.4 vs. -14.2 ± 7.7 µmol·L-1, CON: -17.5 ± 5.6 vs. -15.2 ± 5.3 vs. -14.4 ± 5.5 µmol·L-1, p < .05),SHAM的第二組顯著高於第一組 (第一組 vs. 第二組, -15.8 ± 5.8 vs. -13.6 ± 6.7 µmol·L-1, p < .05),而IPC40則在各組之間無顯著差異。結論:不同劑量的IPC,均無法改善蹲舉運動的反覆次數和訓練量。不過,IPC20似乎具有延緩最大速度流失的效果,而IPC40則可維持含氧血紅素的解離。

    Purpose: To investigate the effect of different doses of ischemic preconditioning (IPC) on squat performance in experienced resistance training participants. Methods: 12 males were required to complete a control trial (CON), and then performed 3 treatments in a randomized crossover design, including IPC40 (4-cycles × 5-min 220 mmHg bilateral thighs occlusion), IPC20 (2-cycles), and SHAM (20 mmHg). Participants performed 3 sets of squats with 70% of 1RM until concentric failure after each treatment. During the squat, the number of repetitions and training volume were measured. Dynamic variables were collected by force platform and linear displacement transducer. Changes in muscle oxygenation were monitored by near-infrared spectroscopy. Results: No significant differences were found in the number of repetitions, training volume, dynamic variables, and changes in muscle oxygenation among the 4 treatments during the squat. However, the maximum velocity at the 2nd and 3rd set in the IPC40, SHAM, and CON were significantly lower than the 1st set. (1st vs. 2nd vs. 3rd, IPC40: 0.96 ± 0.12 vs. 0.91 ± 0.13 vs. 0.89 ± 0.11 m/s, SHAM: 0.95 ± 0.09 vs. 0.89 ± 0.10 vs. 0.86 ± 0.10 m/s, CON: 0.98 ± 0.12 vs. 0.89 ± 0.12 vs. 0.84 ± 0.12 m/s, p < .05), whereas there were no significantly different among the 3 sets in the IPC20. The change in oxyhemoglobin at the 2nd and 3rd set in the IPC20 and CON were significantly higher than the 1st set (1st vs. 2nd vs. 3rd, IPC40: -17.2 ± 7.9 vs. -14.7 ± 7.4 vs. -14.2 ± 7.7 µmol·L-1, CON: -17.5 ± 5.6 vs. -15.2 ± 5.3 vs. -14.4 ± 5.5 µmol·L-1, p < .05), and the 2nd set was significantly higher than the 1st set in the SHAM (1st vs. 2nd, -15.8 ± 5.8 vs. -13.6 ± 6.7 µmol·L-1, p < .05), whereas there were no significantly different among the 3 sets in the IPC40. Conclusion: Different doses of IPC could not improve squat repetitions and volume; however, IPC20 might prevent the decline in maximal squat velocity, while IPC40 might maintain the dissociation of oxyhemoglobin.

    第壹章 緒論 1 第一節 前言 1 第二節 研究的重要性 3 第三節 研究目的 3 第四節 研究假設 3 第五節 研究範圍與限制 4 第六節 名詞操作性定義 4 第貳章 文獻探討 6 第一節 缺血預處理之介紹 6 第二節 缺血預處理對阻力運動表現之影響 7 第三節 缺血預處理提升阻力運動表現之機轉 15 第四節 不同劑量缺血預處理對運動表現之影響 18 第五節 本章總結 21 第參章 研究方法 22 第一節 受試對象 22 第二節 實驗日期與地點 22 第三節 研究工具 22 第四節 研究設計 23 第五節 實驗方法與步驟 24 第六節 資料處理與分析 31 第七節 統計分析 33 第肆章 結果 34 第一節 受試者基本資料 34 第二節 缺血預處理對蹲舉測驗反覆次數與訓練量之影響 35 第三節 缺血預處理對蹲舉測驗動力學指標之影響 39 第四節 缺血預處理對血乳酸與自覺感受之影響 44 第五節 缺血預處理對肌肉氧飽和度之影響 47 第伍章 討論 54 第一節 缺血預處理對蹲舉測驗反覆次數與訓練量之影響 54 第二節 缺血預處理對蹲舉測驗動力學指標之影響 57 第三節 缺血預處理對血乳酸與自覺感受之影響 59 第四節 缺血預處理對肌肉氧飽和度之影響 61 第五節 結論與建議 64 參考文獻 65 附錄 78 附錄一 受試者健康狀況調查表 78 附錄二 受試者須知 79 附錄三 受試者同意書 80 附錄四 實驗紀錄表 81 附錄五 實驗結束後問卷 83

    Andreas, M., Schmid, A. I., Keilani, M., Doberer, D., Bartko, J., Crevenna, R., . . . Wolzt, M. (2011). Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: A randomized crossover trial. Journal of Cardiovascular Magnetic Resonance 13(1), 32. doi:10.1186/1532-429x-13-32
    Angius, L., Pageaux, B., Crisafulli, A., Hopker, J., & Marcora, S. M. (2022). Ischemic preconditioning of the muscle reduces the metaboreflex response of the knee extensors. European Journal of Applied Physiology, 122(1), 141-155. doi:10.1007/s00421-021-04815-0
    Anttila, V., Haapanen, H., Yannopoulos, F., Herajärvi, J., Anttila, T., & Juvonen, T. (2016). Review of remote ischemic preconditioning: From laboratory studies to clinical trials. Scandinavian Cardiovascular Journal, 50(5-6), 355-361. doi:10.1080/14017431.2016.1233351
    Arriel, R. A., de Souza, H. L. R., da Mota, G. R., & Marocolo, M. (2018). Declines in exercise performance are prevented 24 hours after post-exercise ischemic conditioning in amateur cyclists. PLoS One, 13(11), e0207053. doi:10.1371/journal.pone.0207053
    Arriel, R. A., Souza, H. L. R. d., Silva, B. V. C. d., & Marocolo, M. (2019). Ischemic preconditioning delays the time of exhaustion in cycling performance during the early but not in the late phase. Motriz: Revista de Educação Física, 25(1), e101821. doi:10.1590/S1980-6574201800040050
    Bailey, T. G., Jones, H., Gregson, W., Atkinson, G., Cable, N. T., & Thijssen, D. H. (2012). Effect of ischemic preconditioning on lactate accumulation and running performance. Medicine & Science in Sports & Exercise, 44(11), 2084-2089. doi:10.1249/MSS.0b013e318262cb17
    Barbosa, T. C., Machado, A. C., Braz, I. D., Fernandes, I. A., Vianna, L. C., Nobrega, A. C., & Silva, B. M. (2015). Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scandinavian Journal of Medicine & Science in Sports, 25(3), 356-364. doi:10.1111/sms.12229
    Bastos-Silva, V. J., Prestes, J., & Geraldes, A. A. R. (2019). Effect of carbohydrate mouth rinse on training load volume in resistance exercises. The Journal of Strength and Conditioning Research, 33(6), 1653-1657. doi:10.1519/jsc.0000000000002092
    Baz-Valle, E., Fontes-Villalba, M., & Santos-Concejero, J. (2021). Total number of sets as a training volume quantification method for muscle hypertrophy: A systematic review. The Journal of Strength and Conditioning Research, 35(3), 870-878. doi:10.1519/jsc.0000000000002776
    Beaven, C. M., Cook, C. J., Kilduff, L., Drawer, S., & Gill, N. (2012). Intermittent lower-limb occlusion enhances recovery after strenuous exercise. Applied Physiology, Nutrition, and Metabolism, 37(6), 1132-1139. doi:10.1139/h2012-101
    Behrens, M., Zschorlich, V., Mittlmeier, T., Bruhn, S., & Husmann, F. (2020). Ischemic preconditioning did not affect central and peripheral factors of performance fatigability after submaximal isometric exercise. Frontiers in Physiology, 11, 371. doi:10.3389/fphys.2020.00371
    Boone, J., Vandekerckhove, K., Coomans, I., Prieur, F., & Bourgois, J. G. (2016). An integrated view on the oxygenation responses to incremental exercise at the brain, the locomotor and respiratory muscles. European Journal of Applied Physiology, 116(11-12), 2085-2102. doi:10.1007/s00421-016-3468-x
    Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377-381. doi:10.1249/00005768-198205000-00012
    Brigatto, F. A., Lima, L. E. M., Germano, M. D., Aoki, M. S., Braz, T. V., & Lopes, C. R. (2022). High resistance-training volume enhances muscle thickness in resistance-trained men. The Journal of Strength and Conditioning Research, 36(1), 22-30. doi:10.1519/jsc.0000000000003413
    Callewaert, M., Boone, J., Celie, B., De Clercq, D., & Bourgois, J. (2013). Quadriceps muscle fatigue in trained and untrained boys. International Journal of Sports Medicine, 34(1), 14-20. doi:10.1055/s-0032-1316359
    Caru, M., Levesque, A., Lalonde, F., & Curnier, D. (2019). An overview of ischemic preconditioning in exercise performance: A systematic review. Journal of Sport and Health Science, 8(4), 355-369. doi:10.1016/j.jshs.2019.01.008
    Carvalho, L., & Barroso, R. (2019a). Effects of ischemic preconditioning on the isometric test variables. Science & Sports, 34(3), 225-228. doi:10.1016/j.scispo.2018.08.011
    Carvalho, L., & Barroso, R. (2019b). Ischemic preconditioning improves strength endurance performance. The Journal of Strength and Conditioning Research, 33(12), 3332-3337. doi:10.1519/jsc.0000000000002846
    Carvalho, L., Concon, V., Meloni, M., de Souza, E. O., & Barroso, R. (2020). Effects of resistance training combined with ischemic preconditioning on muscle size and strength in resistance-trained individuals. The Journal of Sports Medicine and Physical Fitness, 60(11), 1431-1436. doi:10.23736/s0022-4707.20.11032-6
    Cheng, C. F., Kuo, Y. H., Hsu, W. C., Chen, C., & Pan, C. H. (2021). Local and remote ischemic preconditioning improves sprint interval exercise performance in team sport athletes. International Journal of Environmental Research and Public Health, 18(20), 10653. doi:10.3390/ijerph182010653
    Cocking, S., Cable, N. T., Wilson, M. G., Green, D. J., Thijssen, D. H. J., & Jones, H. (2018a). Conduit artery diameter during exercise is enhanced after local, but not remote, ischemic preconditioning. Frontiers in Physiology, 9, 435. doi:10.3389/fphys.2018.00435
    Cocking, S., Wilson, M. G., Nichols, D., Cable, N. T., Green, D. J., Thijssen, D. H. J., & Jones, H. (2018b). Is there an optimal ischemic-preconditioning dose to improve cycling performance? International Journal of Sports Physiology and Performance, 13(3), 274-282. doi:10.1123/ijspp.2017-0114
    Cohen, M. V., Baines, C. P., & Downey, J. M. (2000). Ischemic preconditioning: From adenosine receptor to KATP channel. Annual Review of Physiology, 62, 79-109. doi:10.1146/annurev.physiol.62.1.79
    Colquhoun, R. J., Gai, C. M., Aguilar, D., Bove, D., Dolan, J., Vargas, A., . . . Campbell, B. I. (2018). Training volume, not frequency, indicative of maximal strength adaptations to resistance training. The Journal of Strength and Conditioning Research, 32(5), 1207-1213. doi:10.1519/jsc.0000000000002414
    Crisafulli, A., Tangianu, F., Tocco, F., Concu, A., Mameli, O., Mulliri, G., & Caria, M. A. (2011). Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. Journal of Applied Physiology, 111(2), 530-536. doi:10.1152/japplphysiol.00266.2011
    Cruz, R. S., de Aguiar, R. A., Turnes, T., Pereira, K. L., & Caputo, F. (2015). Effects of ischemic preconditioning on maximal constant-load cycling performance. Journal of Applied Physiology, 119(9), 961-967. doi:10.1152/japplphysiol.00498.2015
    Cruz, R. S., de Aguiar, R. A., Turnes, T., Salvador, A. F., & Caputo, F. (2016). Effects of ischemic preconditioning on short-duration cycling performance. Applied Physiology, Nutrition, and Metabolism, 41(8), 825-831. doi:10.1139/apnm-2015-0646
    da Silva Novaes, J., da Silva Telles, L. G., Monteiro, E. R., da Silva Araujo, G., Vingren, J. L., Silva Panza, P., . . . Vianna, J. M. (2021). Ischemic preconditioning improves resistance training session performance. The Journal of Strength and Conditioning Research, 35(11), 2993-2998. doi:10.1519/jsc.0000000000003532
    Da Silva Santos, R., & Galdino, G. (2018). Endogenous systems involved in exercise-induced analgesia. Journal of Physiology and Pharmacology, 69(1), 3-13. doi:10.26402/jpp.2018.1.01
    da Silva Telles, L. G., Carelli, L. C., Bráz, I. D., Junqueira, C., Monteiro, E. R., Reis, V. M., . . . da Silva Novaes, J. (2020). Effects of ischemic preconditioning as a warm-up on leg press and bench press performance. Journal of Human Kinetics, 75, 267-277. doi:10.2478/hukin-2020-0055
    de Groot, P. C., Thijssen, D. H., Sanchez, M., Ellenkamp, R., & Hopman, M. T. (2010). Ischemic preconditioning improves maximal performance in humans. European Journal of Applied Physiology, 108(1), 141-146. doi:10.1007/s00421-009-1195-2
    de Queiros, V. S., Dantas, M., Teixeira, R. V., de Ribeiro Dos, V. M. M., de Matos, D. G., da Silva, L. F., . . . Cabral, B. G. A. T. (2021). Effect of a short ischemic preconditioning protocol on 100-m front crawl performance. Human Movement, 22(1), 70-76. doi:10.5114/hm.2021.100326
    de Salles, B. F., Simão, R., Miranda, F., Novaes Jda, S., Lemos, A., & Willardson, J. M. (2009). Rest interval between sets in strength training. Sports Medicine, 39(9), 765-777. doi:10.2165/11315230-000000000-00000
    de Souza, H. L. R., Arriel, R. A., Hohl, R., da Mota, G. R., & Marocolo, M. (2021a). Is ischemic preconditioning intervention occlusion-dependent to enhance resistance exercise performance. The Journal of Strength and Conditioning Research, 35(10), 2706-2712. doi:10.1519/jsc.0000000000003224
    de Souza, H. L. R., Arriel, R. A., Mota, G. R., Hohl, R., & Marocolo, M. (2021b). Does ischemic preconditioning really improve performance or it is just a placebo effect? PLoS One, 16(5), e0250572. doi:10.1371/journal.pone.0250572
    DeLorey, D. S., Kowalchuk, J. M., & Paterson, D. H. (2003). Relationship between pulmonary O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise. Journal of Applied Physiology, 95(1), 113-120. doi:10.1152/japplphysiol.00956.2002
    Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior research methods, 39(2), 175-191. doi:10.3758/BRM.41.4.1149
    Fisher, J. P., & Steele, J. (2017). Heavier and lighter load resistance training to momentary failure produce similar increases in strength with differing degrees of discomfort. Muscle & Nerve, 56(4), 797-803. doi:10.1002/mus.25537
    Foster, C., Boullosa, D., McGuigan, M., Fusco, A., Cortis, C., Arney, B. E., . . . Porcari, J. P. (2021). 25 years of session rating of perceived exertion: Historical perspective and development. International Journal of Sports Physiology and Performance, 16(5), 612-621. doi:10.1123/ijspp.2020-0599
    Fox, C., Walsh, P., & Mulhall, K. J. (2018). Molecular mechanism of ischaemic preconditioning of skeletal muscle in vitro. The Cureus Journal of Medical Science, 10(12), e3763. doi:10.7759/cureus.3763
    Ghosh, S., Standen, N. B., & Galiñanes, M. (2000). Preconditioning the human myocardium by simulated ischemia: Studies on the early and delayed protection. Cardiovascular Research, 45(2), 339-350. doi:10.1016/s0008-6363(99)00353-3
    Griffin, P. J., Hughes, L., Gissane, C., & Patterson, S. D. (2019). Effects of local versus remote ischemic preconditioning on repeated sprint running performance. The Journal of Sports Medicine and Physical Fitness, 59(2), 187-194. doi:10.23736/s0022-4707.18.08400-1
    Halley, S. L., Marshall, P., & Siegler, J. C. (2018). The effect of ischaemic preconditioning on central and peripheral fatiguing mechanisms in humans following sustained maximal isometric exercise. Experimental Physiology, 103(7), 976-984. doi:10.1113/EP086981
    Halley, S. L., Marshall, P., & Siegler, J. C. (2019a). The effect of IPC on central and peripheral fatiguing mechanisms in humans following maximal single limb isokinetic exercise. Physiological Reports, 7(8), e14063. doi:10.14814/phy2.14063
    Halley, S. L., Marshall, P., & Siegler, J. C. (2019b). Effect of ischemic preconditioning and changing inspired O2 fractions on neuromuscular function during intense exercise. Journal of Applied Physiology, 127(6), 1688-1697. doi:10.1152/japplphysiol.00539.2019
    Hansen, L. F., Nielsen, N. S. K., Christoffersen, L. C., & Kruuse, C. (2021). Translational challenges of remote ischemic conditioning in ischemic stroke - a systematic review. Annals of Clinical and Translational Neurology, 8(8), 1720-1729. doi:10.1002/acn3.51405
    Heaselgrave, S. R., Blacker, J., Smeuninx, B., McKendry, J., & Breen, L. (2019). Dose-response relationship of weekly resistance-training volume and frequency on muscular adaptations in trained men. International Journal of Sports Physiology and Performance, 14(3), 360-368. doi:10.1123/ijspp.2018-0427
    Heusch, G., Bøtker, H. E., Przyklenk, K., Redington, A., & Yellon, D. (2015). Remote ischemic conditioning. Journal of the American College of Cardiology, 65(2), 177-195. doi:10.1016/j.jacc.2014.10.031
    Hilty, L., Lutz, K., Maurer, K., Rodenkirch, T., Spengler, C. M., Boutellier, U., . . . Amann, M. (2011). Spinal opioid receptor-sensitive muscle afferents contribute to the fatigue-induced increase in intracortical inhibition in healthy humans. Experimental Physiology, 96(5), 505-517. doi:10.1113/expphysiol.2010.056226
    Hittinger, E. A., Maher, J. L., Nash, M. S., Perry, A. C., Signorile, J. F., Kressler, J., & Jacobs, K. A. (2015). Ischemic preconditioning does not improve peak exercise capacity at sea level or simulated high altitude in trained male cyclists. Applied Physiology, Nutrition, and Metabolism, 40(1), 65-71. doi:10.1139/apnm-2014-0080
    Hoffman, J. (2006). Norms for fitness, performance, and health. Champaign, IL: Human Kinetics.
    Huang, B. H., Wang, T. Y., Lu, K. H., Chang, C. Y., & Chan, K. H. (2020). Effects of ischemic preconditioning on local hemodynamics and isokinetic muscular function. Isokinetics and Exercise Science, 28(1), 73-81. doi:10.3233/IES-194184
    Huang, P. L. (2004). Nitric oxide and cerebral ischemic preconditioning. Cell Calcium, 36(3-4), 323-329. doi:10.1016/j.ceca.2004.02.007
    Incognito, A. V., Burr, J. F., & Millar, P. J. (2016). The effects of ischemic preconditioning on human exercise performance. Sports Medicine, 46(4), 531-544. doi:10.1007/s40279-015-0433-5
    Incognito, A. V., Doherty, C. J., Lee, J. B., Burns, M. J., & Millar, P. J. (2017). Ischemic preconditioning does not alter muscle sympathetic responses to static handgrip and metaboreflex activation in young healthy men. Physiological Reports, 5(14), e13342. doi:10.14814/phy2.13342
    Jensen-Urstad, M., Svedenhag, J., & Sahlin, K. (1994). Effect of muscle mass on lactate formation during exercise in humans. European Journal of Applied Physiology 69(3), 189-195. doi:10.1007/bf01094787
    Jones, A. M., Wilkerson, D. P., & Fulford, J. (2009). Influence of dietary creatine supplementation on muscle phosphocreatine kinetics during knee-extensor exercise in humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 296(4), R1078-R1087. doi:10.1152/ajpregu.90896.2008
    Keramidas, M. E., Kounalakis, S. N., Eiken, O., & Mekjavic, I. B. (2011). Muscle and cerebral oxygenation during exercise performance after short-term respiratory work. Respiratory Physiology & Neurobiology, 175(2), 247-254. doi:10.1016/j.resp.2010.11.009
    Kharbanda, R. K., Mortensen, U. M., White, P. A., Kristiansen, S. B., Schmidt, M. R., Hoschtitzky, J. A., . . . MacAllister, R. (2002). Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation, 106(23), 2881-2883. doi:10.1161/01.cir.0000043806.51912.9b
    Kraus, A., Pasha, E., Machin, D. R., Alkatan, M., Kloner, R. A., & Tanaka, H. (2015). Bilateral upper limb remote ischemic preconditioning improves peak anaerobic power. The Open Sports Medicine Journal, 9, 1-6. doi:10.1249/01.mss.0000496169.98755.1b
    Kunecki, M., Oleksy, T., Biernat, J., Kukla, P., Szwajkos, K., Podolec, P., . . . Płazak, W. (2017). Ischemic conditioning of human heart muscle depends on opioid-receptor system. Folia Medica Cracoviensia, 57(2), 31-39.
    Lagally, K. M., & Robertson, R. J. (2006). Construct validity of the OMNI resistance exercise scale. The Journal of Strength and Conditioning Research, 20(2), 252-256. doi:10.1519/r-17224.1
    Lalonde, F., & Curnier, D. Y. (2015). Can anaerobic performance be improved by remote ischemic preconditioning? The Journal of Strength and Conditioning Research, 29(1), 80-85. doi:10.1519/jsc.0000000000000609
    Lau, W. Y., Muthalib, M., & Nosaka, K. (2013). Visual analog scale and pressure pain threshold for delayed onset muscle soreness assessment. Journal of Musculoskeletal Pain, 21(4), 320-326. doi:10.3109/10582452.2013.848967
    Laurent, C. M., Green, J. M., Bishop, P. A., Sjökvist, J., Schumacker, R. E., Richardson, M. T., & Curtner-Smith, M. (2011). A practical approach to monitoring recovery: Development of a perceived recovery status scale. The Journal of Strength and Conditioning Research, 25(3), 620-628. doi:10.1519/JSC.0b013e3181c69ec6
    Liem, D. A., Verdouw, P. D., Ploeg, H., Kazim, S., & Duncker, D. J. (2002). Sites of action of adenosine in interorgan preconditioning of the heart. American Journal of Physiology-Heart and Circulatory Physiology, 283(1), H29-H37. doi:10.1152/ajpheart.01031.2001.
    Lin, C. W., Huang, C. F., Wang, J. S., Fu, L. L., & Mao, T. Y. (2020). Detection of ventilatory thresholds using near-infrared spectroscopy with a polynomial regression model. Saudi Journal of Biological Sciences, 27(6), 1637-1642. doi:10.1016/j.sjbs.2020.03.005
    Lopez, P., Radaelli, R., Taaffe, D. R., Newton, R. U., Galvão, D. A., Trajano, G. S., . . . Pinto, R. S. (2021). Resistance training load effects on muscle hypertrophy and strength gain: Systematic review and network meta-analysis. Medicine & Science in Sports & Exercise, 53(6), 1206-1216. doi:10.1249/mss.0000000000002585
    Mairbäurl, H. (2013). Red blood cells in sports: Effects of exercise and training on oxygen supply by red blood cells. Frontiers in Physiology, 4, 332. doi:10.3389/fphys.2013.00332
    Mang, Z. A., Realzola, R. A., Ducharme, J., Bellissimo, G. F., Beam, J. R., Mermier, C., . . . Amorim, F. T. (2022). The effect of repetition tempo on cardiovascular and metabolic stress when time under tension is matched during lower body exercise. European Journal of Applied Physiology, 122(6), 1485-1495. doi:10.1007/s00421-022-04941-3
    Marocolo, M., Billaut, F., & da Mota, G. R. (2018). Ischemic preconditioning and exercise performance: An ergogenic aid for whom? Frontiers in Physiology, 9, 1874. doi:10.3389/fphys.2018.01874
    Marocolo, M., da Mota, G. R., Pelegrini, V., & Appell Coriolano, H. J. (2015). Are the beneficial effects of ischemic preconditioning on performance partly a placebo effect? International Journal of Sports Medicine, 36(10), 822-825. doi:10.1055/s-0035-1549857
    Marocolo, M., da Mota, G. R., Simim, M. A., & Appell Coriolano, H. J. (2016). Myths and facts about the effects of ischemic preconditioning on performance. International Journal of Sports Medicine, 37(2), 87-96. doi:10.1055/s-0035-1564253
    Marocolo, M., Marocolo, I. C., da Mota, G. R., Simão, R., Maior, A. S., & Coriolano, H. J. (2016a). Beneficial effects of ischemic preconditioning in resistance exercise fade over time. International Journal of Sports Medicine, 37(10), 819-824. doi:10.1055/s-0042-109066
    Marocolo, M., Simim, M. A. M., Bernardino, A., Monteiro, I. R., Patterson, S. D., & da Mota, G. R. (2019). Ischemic preconditioning and exercise performance: Shedding light through smallest worthwhile change. European Journal of Applied Physiology, 119(10), 2123-2149. doi:10.1007/s00421-019-04214-6
    Marocolo, M., Willardson, J. M., Marocolo, I. C., da Mota, G. R., Simão, R., & Maior, A. S. (2016b). Ischemic preconditioning and placebo intervention improves resistance exercise performance. The Journal of Strength and Conditioning Research, 30(5), 1462-1469. doi:10.1519/jsc.0000000000001232
    Martinopoulou, K., Donti, O., Sands, W. A., Terzis, G., & Bogdanis, G. C. (2022). Evaluation of the isometric and dynamic rates of force development in multi-joint muscle actions. Journal of Human Kinetics, 81, 135-148. doi:10.2478/hukin-2021-0130
    Martou, G., O'Blenes, C. A., Huang, N., McAllister, S. E., Neligan, P. C., Ashrafpour, H., . . . Lipa, J. E. (2006). Development of an in vitro model for study of the efficacy of ischemic preconditioning in human skeletal muscle against ischemia-reperfusion injury. Journal of Applied Physiology, 101(5), 1335-1342. doi:10.1152/japplphysiol.00278.2006
    McBride, J. M., McCaulley, G. O., Cormie, P., Nuzzo, J. L., Cavill, M. J., & Triplett, N. T. (2009). Comparison of methods to quantify volume during resistance exercise. The Journal of Strength and Conditioning Research, 23(1), 106-110. doi:10.1519/jsc.0b013e31818efdfe
    McLean, S., Kerhervé, H., Lovell, G. P., Gorman, A. D., & Solomon, C. (2016). The effect of recovery duration on vastus lateralis oxygenation, heart rate, perceived exertion and time motion descriptors during small sided football games. PLoS One, 11(2), e0150201. doi:10.1371/journal.pone.0150201
    Mota, G. R., Rightmire, Z. B., Martin, J. S., McDonald, J. R., Kavazis, A. N., Pascoe, D. D., & Gladden, L. B. (2020). Ischemic preconditioning has no effect on maximal arm cycling exercise in women. European Journal of Applied Physiology, 120(2), 369-380. doi:10.1007/s00421-019-04281-9
    Mulliri, G., Sainas, G., Magnani, S., Palazzolo, G., Milia, N., Orrù, A., . . . Crisafulli, A. (2016). Ischemic preconditioning reduces hemodynamic response during metaboreflex activation. American Journal of Physiology, 310(9), R777-R787. doi:10.1152/ajpregu.00429.2015
    Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation, 74(5), 1124-1136. doi:10.1161/01.cir.74.5.1124
    O'Brien, L., & Jacobs, I. (2021). Methodological variations contributing to heterogenous ergogenic responses to ischemic preconditioning. Frontiers in Physiology, 12, 656980. doi:10.3389/fphys.2021.656980
    Paixão, R. C., da Mota, G. R., & Marocolo, M. (2014). Acute effect of ischemic preconditioning is detrimental to anaerobic performance in cyclists. International Journal of Sports Medicine, 35(11), 912-915. doi:10.1055/s-0034-1372628
    Paradis-Deschênes, P., Joanisse, D. R., & Billaut, F. (2016a). Ischemic preconditioning increases muscle perfusion, oxygen uptake, and force in strength-trained athletes. Applied Physiology, Nutrition, and Metabolism, 41(9), 938-944. doi:10.1139/apnm-2015-0561
    Paradis-Deschênes, P., Joanisse, D. R., & Billaut, F. (2016b). Sex-specific impact of ischemic preconditioning on tissue oxygenation and maximal concentric force. Frontiers in Physiology, 7, 674. doi:10.3389/fphys.2016.00674
    Paradis-Deschênes, P., Lapointe, J., Joanisse, D. R., & Billaut, F. (2020). Similar recovery of maximal cycling performance after ischemic preconditioning, neuromuscular electrical stimulation or active recovery in endurance athletes. Journal of Sports Science and Medicine, 19(4), 761-771.
    Patel, H. H., Moore, J., Hsu, A. K., & Gross, G. J. (2002). Cardioprotection at a distance: Mesenteric artery occlusion protects the myocardium via an opioid sensitive mechanism. The Journal of Molecular and Cellular Cardiology, 34(10), 1317-1323. doi:10.1006/jmcc.2002.2072
    Patel, S., Jose, A., & Mohiuddin, S. S. (2022). Physiology, oxygen transport and carbon dioxide dissociation curve. In. Treasure Island, FL: StatPearls.
    Pearson, M., García-Ramos, A., Morrison, M., Ramirez-Lopez, C., Dalton-Barron, N., & Weakley, J. (2020). Velocity loss thresholds reliably control kinetic and kinematic outputs during free weight resistance training. International Journal of Environmental Research and Public Health, 17(18), 6509. doi:10.3390/ijerph17186509
    Pethick, J., Casselton, C., Winter, S. L., & Burnley, M. (2021). Ischemic preconditioning blunts loss of knee extensor torque complexity with fatigue. Medicine & Science in Sports & Exercise, 53(2), 306-315. doi:10.1249/mss.0000000000002475
    Piper, T., Furman, S., Smith, T., & Waller, M. (2021). Establishing normative data for 10RM strength scores in college-aged males. International Journal of Strength and Conditioning, 1(1), 1-13. doi:10.47206/ijsc.v1i1.40
    Przyklenk, K., Bauer, B., Ovize, M., Kloner, R. A., & Whittaker, P. (1993). Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation, 87(3), 893-899. doi:10.1161/01.cir.87.3.893
    Ralston, G. W., Kilgore, L., Wyatt, F. B., & Baker, J. S. (2017). The effect of weekly set volume on strength gain: A meta-analysis. Sports Medicine, 47(12), 2585-2601. doi:10.1007/s40279-017-0762-7
    Ratamess, N. A., Alvar, B. A., Evetoch, T. E., Housh, T. J., Ben Kibler, W., Kraemer, W. J., & Triplett, N. T. (2009). Progression models in resistance training for healthy adults. Medicine & Science in Sports & Exercise, 41(3), 687-708. doi:10.1249/MSS.0b013e3181915670
    Robergs, R. A., Ghiasvand, F., & Parker, D. (2004). Biochemistry of exercise-induced metabolic acidosis. American Journal of Physiology, 287(3), R502-R516. doi:10.1152/ajpregu.00114.2004
    Rodriguez, R. F., Townsend, N. E., Aughey, R. J., & Billaut, F. (2018). Influence of averaging method on muscle deoxygenation interpretation during repeated-sprint exercise. Scandinavian Journal of Medicine & Science in Sports, 28(11), 2263-2271. doi:10.1111/sms.13238
    Schoemaker, R. G., & van Heijningen, C. L. (2000). Bradykinin mediates cardiac preconditioning at a distance. American Journal of Physiology-Heart and Circulatory Physiology, 278(5), H1571-H1576. doi:10.1152/ajpheart.2000.278.5.H1571
    Sharma, V., Cunniffe, B., Verma, A. P., Cardinale, M., & Yellon, D. (2014). Characterization of acute ischemia-related physiological responses associated with remote ischemic preconditioning: A randomized controlled, crossover human study. Physiological Reports, 2(11), e12200. doi:10.14814/phy2.12200
    Sharma, V., Marsh, R., Cunniffe, B., Cardinale, M., Yellon, D. M., & Davidson, S. M. (2015). From protecting the heart to improving athletic performance - the benefits of local and remote ischaemic preconditioning. Cardiovascular Drugs and Therapy, 29(6), 573-588. doi:10.1007/s10557-015-6621-6
    Sprick, J. D., Mallet, R. T., Przyklenk, K., & Rickards, C. A. (2019). Ischaemic and hypoxic conditioning: Potential for protection of vital organs. Experimental Physiology, 104(3), 278-294. doi:10.1113/ep087122
    Takaoka, A., Nakae, I., Mitsunami, K., Yabe, T., Morikawa, S., Inubushi, T., & Kinoshita, M. (1999). Renal ischemia/reperfusion remotely improves myocardial energy metabolism during myocardial ischemia via adenosine receptors in rabbits: effects of "remote preconditioning". Journal of the American College of Cardiology, 33(2), 556-564. doi:10.1016/s0735-1097(98)00559-2
    Tanaka, D., Suga, T., Tanaka, T., Kido, K., Honjo, T., Fujita, S., . . . Isaka, T. (2016). Ischemic preconditioning enhances muscle endurance during sustained isometric exercise. International Journal of Sports Medicine, 37(8), 614-618. doi:10.1055/s-0035-1565141
    Thompson, K. M. A., Whinton, A. K., Ferth, S., Spriet, L. L., & Burr, J. F. (2018). Ischemic preconditioning: No influence on maximal sprint acceleration performance. International Journal of Sports Physiology and Performance, 13(8), 986-990. doi:10.1123/ijspp.2017-0540
    Torres-Querol, C., Quintana-Luque, M., Arque, G., & Purroy, F. (2021). Preclinical evidence of remote ischemic conditioning in ischemic stroke, a metanalysis update. Scientific Reports, 11(1), 23706. doi:10.1038/s41598-021-03003-6
    Turnes, T., de Aguiar, R. A., de Oliveira Cruz, R. S., Salvador, A. F., Lisbôa, F. D., Pereira, K. L., . . . Caputo, F. (2018). Impact of ischaemia-reperfusion cycles during ischaemic preconditioning on 2000-m rowing ergometer performance. European Journal of Applied Physiology, 118(8), 1599-1607. doi:10.1007/s00421-018-3891-2
    Valenzuela, P. L., Martín-Candilejo, R., Sánchez-Martínez, G., Bouzas Marins, J. C., de la Villa, P., & Sillero-Quintana, M. (2021). Ischemic preconditioning and muscle force capabilities. The Journal of Strength and Conditioning Research, 35(8), 2187-2192. doi:10.1519/jsc.0000000000003104
    Vieira, J. G., Sardeli, A. V., Dias, M. R., Filho, J. E., Campos, Y., Sant'Ana, L., . . . Vianna, J. (2022). Effects of resistance training to muscle failure on acute fatigue: A systematic review and meta-analysis. Sports Medicine, 52(5), 1103-1125. doi:10.1007/s40279-021-01602-x
    Wang, L., Ren, C., Li, Y., Gao, C., Li, N., Li, H., . . . Ji, X. (2021). Remote ischemic conditioning enhances oxygen supply to ischemic brain tissue in a mouse model of stroke: Role of elevated 2,3-biphosphoglycerate in erythrocytes. Journal of Cerebral Blood Flow & Metabolism, 41(6), 1277-1290. doi:10.1177/0271678x20952264
    Wang, Y., Xu, H., Mizoguchi, K., Oe, M., & Maeta, H. (2001). Intestinal ischemia induces late preconditioning against myocardial infarction: A role for inducible nitric oxide synthase. Cardiovascular Research, 49(2), 391-398. doi:10.1016/s0008-6363(00)00266-2
    Weakley, J., McLaren, S., Ramirez-Lopez, C., García-Ramos, A., Dalton-Barron, N., Banyard, H., . . . Jones, B. (2020). Application of velocity loss thresholds during free-weight resistance training: Responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. Journal of Sports Sciences, 38(5), 477-485. doi:10.1080/02640414.2019.1706831
    Wever, K. E., Hooijmans, C. R., Riksen, N. P., Sterenborg, T. B., Sena, E. S., Ritskes-Hoitinga, M., & Warlé, M. C. (2015). Determinants of the efficacy of cardiac ischemic preconditioning: A systematic review and meta-analysis of animal studies. PLoS One, 10(11), e0142021. doi:10.1371/journal.pone.0142021
    Wilk, M., Tufano, J. J., & Zajac, A. (2020). The influence of movement tempo on acute neuromuscular, hormonal, and mechanical responses to resistance exercise-a mini review. The Journal of Strength and Conditioning Research, 34(8), 2369-2383. doi:10.1519/jsc.0000000000003636
    Williams, N., Russell, M., Cook, C. J., & Kilduff, L. P. (2021). Effect of ischemic preconditioning on maximal swimming performance. The Journal of Strength and Conditioning Research, 35(1), 221-226. doi:10.1519/jsc.0000000000002485

    無法下載圖示 電子全文延後公開
    2027/08/22
    QR CODE