研究生: |
楊毓盈 |
---|---|
論文名稱: |
使用腦磁圖研究實際與想像手指按鍵運動時腦部運動神經元活化情況的差異性 |
指導教授: |
洪姮娥
Horng, Herng-Er 楊鴻昌 Yang, Hong-Chang |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 腦磁圖 、手指按鍵運動 |
論文種類: | 學術論文 |
相關次數: | 點閱:252 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大腦在自主運動上扮演著非常重要的角色。本研究利用128通道全腦式腦磁圖儀來探討人類自主手指按鍵運動與想像手指按鍵運動大腦神經元活化的差異性。本論文之實驗分為兩個階段,第一階段為自主手指按鍵實驗,第二階段為想像手指按鍵實驗,主要想比較這兩種實驗大腦活化之差異性。總共有9位受試者參與本次試驗,我們將受試者進行手指按鍵運動所產生的動作關聯皮質磁場(Movement- related cortical fields, MRCFs)以及想像手指按鍵運動的訊號用腦磁圖紀錄下來。
我們採用CURRY 6.0這套腦波分析軟體對運動神經元的位置進行定位。在自主手指按鍵實驗數據分析上,我們先使用軟體計算出動作關聯皮質磁場 (MRCFs)在每一個時刻的mean global field power (MGFP),然後選取MGFP的最大值,再統計出所有受試者左手與右手實際按鍵運動動作關聯皮質磁場 (MRCFs)延遲時間。首先我們針對全腦作分析,結果顯示右手與左手實際按鍵運動動作關聯皮質磁場(MRCFs)平均延遲時間之間並無顯著差異。之後我們將某位受試者的數據分為左、右半腦做更精確的分析,發現同側半腦並無明顯特徵波形,但對側腦確有明顯特徵波形。因此我們針對對側腦動作關聯皮質磁場 (MRCFs)延遲時間做分析,最後比較右、左手手指按鍵運動全腦與對側腦各特徵波形的延遲時間,發現不論是全腦還是對側腦,各特徵波形的延遲時間均相同,證實了手指運動這個動作是由對側腦控制。
進一步分析我們利用電流密度重建方法建立各受試者的大腦模型,比較兩階段實驗運動特徵波形活化位置以及活化程度,實際運動的活化區域為precentral gyrus (中央前迴)、postcentral gyrus (中央後迴)。想像運動的活化區域為superior parietal lobule (上頂葉)、inferior parietal lobule (下頂葉)、precentral gyrus (中央前迴)、postcentral gyrus (中央後迴)、cerebullum (小腦)、premotor cortex (運動前皮質)及insula(腦島)。我們發現實際運動及想像運動的活化區域具有差異。
1. Decety J, Jeannerod M., (1996) Mentally simulated movements in virtual reality:Does Fitts law hold in motor imagery? Behav Brain Res ,72: 127–134.
2. Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B., (1994) Mapping motor representations with positron emission tomography. Nature , 371:600–602.
3. Kornhuber, H.H. and Deecke, L., (1965)Hirnpotential¨anderungen bei Willku¨rbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale, Pflu¨gers Arch, 284: 1–17.
4. D. Devos, Ph. Derambure, J.L. Bourriez, D.F. Cassimb, S. Blondc, J.D. Guieub, A. Deste´ea, L. Defebvrea., (2002) Influence of internal globus pallidus stimulation on motor cortex activation pattern in Parkinson’s disease. Clinical Neurophysiology, 113:1110-1120.
5. Kakigi R., (1994) Somatosensory evoked magnetic fields following median nerve stimulation. Neurosci, 20:165–174.
6. Hoshiyama M, Kakigi R, Koyama S, Kitamura Y, Shimojo M,Watanabe S., (1995) Somatosensory evoked magnetic fields after mechanical stimulation of the scalp in humans. Neurosci Lett,195: 29–32.
7. Cheyne D, Weinberg H., (1989) Neuromagnetic fields accompanyingunilateral finger movements: pre-movement and movement-evoked fields. Exp Brain, 78: 604–612.
8. Chiarenza GA, Hari R, Karhu JJ, Tessore S., (1991) Brain activity associated with skilled finger movements: multichannel magnetic cording. Brain Topogr, 3:433–439.
9. Kristeva R, Cheyne D, Deecke L.,(1991)Neuromagnetic fields accompanying unilateral and bilateral voluntary movements: topography and analysis of cortical sources. Electroencephalogr Clin Neurophysiol, 81: 284–298.
10. R. Kristeva-Feige , S. Rossi , B. Feige , Th. Mergner , C.H. Lu¨cking , P.M. Rossini., (1997) The bereitschaftspotential paradigm in investigating voluntary movement organization in humans using magnetoencephalography. Brain Research Protocols 1:13–22
11.Aymeric Guillot, Edyta Nadroeska. (2005) Using motor imagery to learn tactical movements in basketball. Journal of sport behavior 189-205.
12. Gerloff, C., Toro, C., Uenishi, N., Cohen, L.G., Leocani, L. and Hallett, M., (1997) Steady-state movement-related cortical potentials: A new approach to assess cortical processing of fast repetitive finger movements. Electroenceph. Clin Neurophysiol 102: 106–113.
13. Goldring, S. and Ratcheson, R., (1972) Human motor cortex: sensory input data from single neuron recordings. Science 175: 1493–1495.
14. Matsunami, K. and Hamada, I., (1981) Characteristics of the ipsilateral movement related neuron in the motor cortex of the monkey. Brain Res, , 204:29–42.
15. Sasaki, K. and Gemba, H. Cortical potentials associated with voluntary movements in monkeys. In: C.H.M. Brunia, G. Mulder and M.N. Verbaten (Eds.), (1991)Event-Related Brain Research (EEG Suppl. 42). Elsevier, Amsterdam, , pp. 80–96.
16. Sasaki, K. and Gemba, H. Cortical potentials associated with voluntary movements in monkeys. In: C.H.M. Brunia, G. Mulder and M.N. Verbaten (Eds.), (1991) Event-Related Brain Research (EEG Suppl. 42). Elsevier,Amsterdam pp. 80–96.
17.Cheyne D, Kristeva R, Deecke L, Weinberg H., (1992) Spatiotemporal source modeling of sensorimotor cortex activation accompanying human voluntary movement. In: Hoke M, Erné SN, Okada YC, Romani GL (eds) Biomagnetism: clinical aspects. Elsevier,Amsterdam pp. 717–721.
18.C.Gerloff, N.Uenishi, T.Nagamine, T.Kunieda,M.Hallett, H.Shibasaki., (1998) Cortical activation during fast repetitive finger movements in humans: steady-state movement-related magnetic fields and their cortical generators. Electroencephalography and clinical Neurophtsiology 444-453.
19.Porro CA, Cettolo V, Francescato MP, and Baraldi P., (2000) Ipsilateral involvement of primary motor cortex during motor imagery. Eur J Neurosci 12:3059–3063.
20.Lorey B, Pilgramm S, Bischoff M, Stark R, Vaitl D, Kindermann S, Munzert J, Zentgraf K., (2011)Activation of the parieto-premotor network is associated with vivid motor imagery--a parametric FMRI study. PLoS One. 6(5):e20368.
21. Gerardin E, Sirigu A, Lehericy S, Poline JB, Gaymard B, Marsault C, Agid Y, and Le Bihan D., Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex (2000) 10: 1093–1104.
22. Takashi H., Ilka I., Keiichiro T., Michael A.D., Peter VG, and Mark H., (2003)Functional Properties of Brain Areas Associated With Motor Execution and Imagery. J Neurophysiol89: 989–1002.
23. E. N. Marieb, R.N., Jon Mallatt., (1996) Human Anatomy, Benjaminn
/ Cummings pp.325.
24. Luo J, Niki K, Ding ZG, Luo YJ., (2004) Precuneus contributes to attentive control of finger movement. ActaPharmacolSin, 25(5):637-43.
25. N. Liang, T. Murakami, K. Funase, T. Narita, T. Kasai., (2008) Further evidence for excitability changes in human primary motor cortex during ipsilateral voluntary contractions.Neurosci. Lett 433, pp. 135–140.
26. Hoshiyama M, Kakigi R, Berg P, Koyama S, Kitamura Y, Shimojo M, Watanabe S, Nakamura A, (1997) Identification of motor and sensory brain activities during unilateral finger movement: spatiotemporal source analysis of movement-associated magnetic fields. Exp Brain Res 115(1):6-14.
27. M. Hamalainen et al., (1993)Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of modern physics, 65:413–497.
28. Jeannerod M., (1994) The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 17:187–245.
29. Lotze M, Montoya P, Erb M, Hu¨lsmann E, Flor H., (1999) Activation of cortical and cerebellar motor areas during executed and imagined hand movements: An fMRI study. J Cogn Neurosci 11: 491–501.
30. Vargas CD, Olivier E, Craighero L, Fadiga L, Duhamel JR., (2004) The influence of hand posture on corticospinal excitability during motor imagery: A transcranial magnetic stimulation study. Cereb Cortex 14: 1200–1206.
31. Guillot A, Collet C, Nguyen VA, Malouin F, Richards C., (2008) Brain activity during visual versus kinesthetic imagery: An fMRI study. Hum Brain Mapping 30: 2157–2172.
32. Guillot, A., Collet, C., (2008). Construction of the motor imagery integrative model in sport:a review and theoretical investigation of motor imagery use. Int. Rev. Sport Exerc. Psychol. 1, 31–44.
33. KL Chen, HC Yang, SY Tsai, YW Liu, SH Liao, HE Horng, YH Lee, and H Kwon, (2011) “The stability of source localization in a whole-head magnetoencephalography system demonstrated by auditory evoked field measurements,” JOURNAL OF APPLIED PHYSICS, 110, 074702.
34. YH Lee, KK Yu, HK Won, JM Kim, K Kim, YK Park,HC Yang, K L Chen, SY Yang and H E Horng. (2009) A whole-head magnetoencephalography system with compact axial gradiometer structure. Supercond. Sci. Technol. 22 045023.
35. Jörn Munzert, Karen Zentgraf, Rudolf Stark, Dieter Vaitl, (2008)
Neural activation in cognitive motor processes: comparing motor imagery and observation of gymnastic movements. Exp Brain Res 188:437–444