簡易檢索 / 詳目顯示

研究生: 賴冠廷
Guan-Ting Lai
論文名稱: 利用射頻濺鍍製作氧化鋁鈰 MIS 電容器之電性與結構特性分析
The Electrical and Structural Properties of Al/CeAlO/p-Si MIS Capacitors Fabricated by RF Sputtering
指導教授: 程金保
Cheng, Chin-Pao
劉傳璽
Liu, Chuan-Hsi
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 80
中文關鍵詞: 濺鍍氧化鋁鈰氧缺
英文關鍵詞: sputter, CeAlO, oxygen vacancy
論文種類: 學術論文
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 極薄高介電係數氧化鈰和氧化鋁鈰薄膜分別利用射頻磁控濺鍍的方式,沉積在p型的矽基板上,以做成金屬-絕緣體-半導體的電容器。在室溫下沉積薄膜在不同的氧氬比,經由橢圓儀所量測出來的物理厚度約為7奈米,沉積之後在氮氣環境下進行快速熱退火,溫度為550oC和850oC,由X光繞射和原子力顯微鏡,可看出薄膜在經過快速熱退火所顯示結晶與非晶態的現象。由Agilent B1500A electrometer和4980 LCR meter可進行電流-電壓和電容-電壓的電性量測。穿透式電子顯微鏡和X射線光電子能譜是用來確認微觀的氧化鈰和氧化鋁鈰絕緣體與矽基板所形成的介面層。
    根據X光繞射,氧化鈰薄膜在退火550oC是為非晶態的,但退火到850oC是有結晶的現象,所以當退火溫度從550oC到850oC時,介電常數和漏電流都有下降的現象產生。這種現象歸因於較高的退火溫度形成較厚的界面層,這也證實了X光繞射、X射線光電子能譜和穿透式電子顯微鏡。
    另一方面,氧化鋁鈰在退火850oC是非晶態的,表明氧化鈰加鋁可抑制結晶的形成。此外,由於薄膜沉積過程中氧氬比從0:5增加到3:5時,介電常數增大,閘極漏電流降低。這種現象是符合的氧空位模型。
    結論為氧化鈰和氧化鋁鈰閘極絕緣層的電性及材料特性進行了量測和比較。氧化鈰加鋁可提高結晶溫度。氧化鈰或氧化鋁鈰的漏電流,主要分別由界面層厚度或氧空缺所主導。

    Ultra-thin high-k CeO2 and CeAlO films were independently deposited on p-type Si-substrate by RF magnetron co-sputtering as the gate insulators of metal-insulator-semiconductor (MIS) capacitors. The film deposition was carried out in the oxygen/argon (O2/Ar) ambient with various ratios at room temperature, and the physical thickness of the films was determined to be about 7 nm by ellipsometry. After deposition, a rapid thermal anneal (RTA) in nitrogen (N2) ambient was then performed at 550 or 850℃. The crystalline phases and morphologies of the high-k films after RTA were analyzed by X-ray diffraction (XRD) patterns and atomic force microscopy (AFM) measurements, respectively. Moreover, J-V (current density-voltage) and high frequency (1 MHz) C-V (capacitance-voltage) measurements were performed with Agilent B1500A electrometer and 4980 LCR meter, respectively, for electrical characterization. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were utilized to confirm the microstructures of the CeO2 and CeAlO insulators and their interfacial layers formed in contact with the Si-substrates.
    According to XRD, CeO2 films are amorphous after 550℃ annealing but are crystallized after 850℃ annealing. Moreover, as annealing temperature increases from 550 to 850℃, both the dielectric constant and gate leakage current of CeO2 films decrease. This phenomenon is attributed to a thicker interfacial layer (Ce-silicate) formed after a higher temperature RTA, which is confirmed by XRD, XPS, and TEM.
    On the other hand, CeAlO films remain amorphous after 850℃ annealing, indicating that the incorporation of Al into CeO2 suppresses the crystallization. Furthermore, as the O2/Ar ratio during film deposition increases from 0:5 to 3:5, the dielectric constant increases and the gate leakage current decreases. This behavior is consistent with the oxygen vacancy model.
    In conclusion, electrical and material properties of CeO2 and CeAlO gate insulators have been measured and compared. The addition of Al into CeO2 can raise crystallization temperature. The leakage current of CeO2 or CeAlO is suggested to be dominated by silicate thickness or oxygen vacancies, respectively.

    第一章 緒論 1 1.1 前言 1 1.2 界面層 (interfacial layer)之探討 1 1.3 漏電流 (leakage current)之探討 2 第二章 文獻回顧 3 2-1 MOS 電容理論基礎 3 2-2 MOS 結構中氧化層缺陷之型態 5 2-2-1 界面捕獲電荷 (interface trapped charge, Qit) 5 2-2-2 氧化層固定電荷 (fixed oxide charge, Qf) 6 2-2-3 氧化層捕獲電荷 (oxide trapped charge, Qot) 6 2-2-4 可移動的游離電荷 (mobile ionic charge, Qm) 7 2-2-5 金氧半功函數差與氧化物電荷 7 2-3 金屬-氧化層-半導體電晶體 (MOSFET)電流公式 8 2-4 高介電係數材料特性探討 9 2-5 高介電係數薄膜特性簡介 9 2-5-1 氧化鑭 (ZrO2) 9 2-5-2 氧化鉿 (HfO2) 9 2-5-3 氧化鈰 (CeO2) 10 2-6 含摻雜之氧化鈰薄膜 11 2-7 高介電係數薄膜漏電流傳導機制分析 11 2-8 電荷陷阱與缺陷種類之分析 11 2-8-1不同沉積後的回火 (PDA)對臨界電壓之影響 12 2-8-2 不同閘極電壓、溫度、製程條件對於臨界電壓之影響 13 2-9 漏電流機制分析 14 第三章 實驗原理、設備與方法 30 3.1實驗儀器原理 30 3.1.1直流濺射鍍膜系統 (direct current sputtering system) 30 3.1.1-1系統原理及功能 30 3.1.1-2系統構造及反應機制 31 3.1.2 射頻濺射鍍膜系統 (radio frequency sputtering system) 32 3.1.2-1 系統原理及功能簡介 32 3.1.2-2 系統構造及電路系統 33 3.1.3 X 光繞射 (X-ray diffraction)原理 34 3.1.4 原子力顯微鏡 (atomic force microscopy, AFM)原理 35 3.1.5 穿透式電子顯微鏡 (transmission electron microscopy, TEM)構造與原理 35 3.1.5-1 照明系統 36 3.1.5-2 呈像系統 36 3.1.5-3 影像轉換系統 37 3.1.5-4 真空系統 37 3.1.6 偏光解析法 (ellipsometry) 38 3.2 實驗方法與步驟 39 3.2.1 氧化鈰 (CeO2)薄膜之製作 39 3.2.2 氧化鋁鈰 (CeAlO)薄膜之製作 39 3.2.3 熱退火 (annealing)處理 40 3.2.4 上電極之製作 40 第四章 結果與討論 49 4.1 X射線衍射譜 (XRD) 49 4.2原子力顯微鏡(AFM) 50 4.3 X射線光電子能譜儀 (XPS) 51 4.4 X 線反射率分析法 (XRR) 51 4.5 穿透式電子顯微鏡 (TEM) 52 4.6 電容-電壓 (C-V)特性曲線量測 52 4.6.1 二氧化鈰 (CeO2)薄膜電容器之 C-V量測 52 4.6.2 氧化鈰薄膜與氧化鋁鈰薄膜電容器之 C-V 量測 53 4.6.3 氧化鋁鈰 (CeAlO)薄膜電容器之 C-V量測 53 4.7電流-電壓 (I-V)特性曲線量測 54 4.7.1 二氧化鈰 (CeO2)薄膜電容器之I-V量測 54 4.7.2 氧化鈰薄膜與氧化鋁鈰薄膜電容器之 I-V 量測 54 4.7.3 氧化鋁鈰 (CeAlO)薄膜電容器之I-V量測 55 4.8 漏電量機制探討 55 4.8.1 Schottky 機制 55 第五章 結論與展望 75 參考文獻 76

    [1] S. H. Lo, D. A. Buchanan, Y. Taur and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s”, IEEE Electron Device Lett. 18, 209 (1997).
    [2] S. M. Sze, “Physics of semiconductor devices”, 2nd ed (Wiley, New York, 1981).
    [3] B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon”, IEEE Electron Device Lett. 27, 606 (1980).
    [4] D. K. Schroder, “Semiconductor material and device characterization”, 3rd ed (Wiley, New York, 2006).
    [5] 劉傳璽、陳進來,半導體物理元件與製程-理論與實務,2版,2006。
    [6] J. Roberson and C. W. Chen, “Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalite”, Appl. Phys. Lett. 74, 1168 (1999).
    [7] G. D. Wilk, R. M. Wallace and J. M. Anthony, “High-k gate dielectrics: current status and materials properties considerations”, J. Appl. Phys. 89, 5243 (2001).
    [8] W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, K. Onishi, T. Ngai, S. Banerjee and J. C. Lee, “MOSCAP and MOSFET characteristics using ZrO2 gate dielectric deposited directly on Si”, Tech. Dig. - Int. Electron Devices Meet. 145 (1999).
    [9] J. McPherson, J. Kim, A. Shanware, H. Mogul and J. Rodriguesz, “Proposed universal relationship between dielectric breakdown and dielectric constant”, Tech. Dig. - Int. Electron Devices Meet. 633 (2002).
    [10] H. Kang, Y. Roh, G. Bae, D. Jung and C. W. Yang, “Characteristics of HfO2/HfSixOy film as an alternative gate dielectric in metal-oxide-semiconductor devices”, Jpn. J. Appl. Phys. 41, 6904 (2002).
    [11] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon”, J. Mater. Chem. 11, 2757 (1996).
    [12] N. V. Skorodumova, R. Ahuja, S. I. Simak, I. A. Abrikosov, B. Johansson and B. I. Lundqvist, “Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles”, Phys. Rev. B 64, 115108 (2001).
    [13] J. C. Wang, Y. P. Hung, C. L. Lee and T. F. Lei, “Improved characteristics of ultra thin CeO2 by using post nitridation annealing”, J. Electrochem. Soc. 151, F17 (2004).
    [14] Y. Nishikawa, T. Yamaguchi, M. Yoshiki, H. Satake and N. Fukushima, “Interfacial properties of single-crystalline CeO2 high-k gate dielectrics directly grown on Si (111)”, Appl. Phys. Lett. 81, 4386 (2002).
    [15] C. H. Chen, I. Y. K. Chang and J. Y. M. Lee, “Electrical characterization of CeO2 / Si interface properties of metal-oxide semiconductor field-effect transistors with CeO2 gate dielectric”, Appl. Phys. Lett. 92, 043507 (2008).
    [16] J. Ho. Yoo, S. W. Nam, S. K. Kang, Y. H. Jeong, D. H. Ko, J. H. Ku and H. J. Lee, “A study on the microstructure and electrical properties of CeO2 thin films for gate dielectric applications”, Microelectron. Eng. 56, 187 (2001).
    [17] L. P. Wang, B. Y. Tang, N. Huang, X. B. Tian and P. K. Chu, “Low temperature growth of CeO2 (111) layer on Si (100) using dual plasma deposition”, Mater. Sci.
    Eng. 308, 176 (2001).
    [18] A. Chin. C. C. Liao, C. H. Lu, W. J. Chen and C. Tsai, “Device and reliability of high-k Al2O3 gate dielectric with good mobility and low Dit”, Tech. Dig. VLSI Symp. 135 (1999).
    [19] D. A. Buchananl, E. P. Gusev, E. Cartier, H. Okorn-Schmidt, K. Rim, M. A. Gribelyuk, A. Mocuta, A. Ajmera, M. Copel, S. Guha, N. Bojarczuk, A. Callegari, C. DEmicl, P. Kozlowskil, K. Chan, R. J. Fleming, P. C. Jamison, J. Brown and R. Arndt, “80 nm poly-silicon gated n-FETs with ultra-thin Al203 gate dielectric for ULSI applications”, Tech. Dig. - Int. Electron Devices Meet. 223 (2000).
    [20] A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao and W. J. Chen, “High quality La2O3 and Al2O3 gate dielectrics with equivalent oxide thickness 5-10Å”, Tech. Dig. VLSI Symp. 16 (2000).
    [21] L. Yan, L. B. Kong, J. S. Pan and C. K. Ong, “Role of oxygen pressure in growth of CeAlOx thin films on Si by pulsed laser deposition”, J. Appl. Phys. 94, 594 (2003).
    [22] M. Jo, H. Park, J. M. Lee, M. Chang, H. S. Jung, J. H. Lee and H. Hwang, “Effect of oxygen postdeposition annealing on bias temperature instability of hafnium silicate MOSFET”, IEEE Electron Device Lett. 29, 399 (2008).
    [23] X. F. Chen, W. G. Zhu and O. K. Tan, “Microstructure, dielectric properties and hydrogen gas sensitivity of sputtered amorphous Ba0.67Sr0.33TiO3 thin films”, Mater. Sci. Eng. 77, 177 (2000).
    [24] T. S. Lay, M. Hong, J. Kwo, J. P. Mannaerts, W. H. Hung and D. J. Huang, “Energy-band parameters at the GaAs- and GaN-Ga2O3(Gd2O3) interfaces”, Solid-State Electron. 45, 1679 (2001).
    [25] C. H. Liu, M. T. Lee, C. Y. Lin, J. Chen, Y. T. Loh, F. T. Liou, K. Schruefer, A. A. Katsetos, Z. Yang, N. Rovedo, T. B. Hock, C. Wann and T. C. Chen, “Mechanism of threshold voltage shift (ΔVth) caused by negative bias temperature instability (NBTI) in deep submicron pMOSFETs”, Jpn. J. Appl. Phys. 41, 2423 (2002).
    [26] P. Riess, G. Ghibaudo, G. Pananakakis, J. Brini and G. Ghidini, “Electric field and temperature dependence of the stress induced leakage current: Fowler-Nordheim or Schottky emission?”, J. Non-Cryst. Solids 245, 48 (1999).
    [27] Fu-Chien Chiu, “Current conduction mechanisms in CeO2 thin films”, Electrochem. Solid-State Lett. 11, 135 (2008).
    [28] A. S. Grove and D. J. Fitzgerald, “Surface recombination in semiconductors”, Solid-State Electron. 9, 783 (1966).
    [29] T. Giebel and K. Goser, “MOSFET’s characterized by a gated-diode measurement technique”, IEEE Electron Device Lett. 10, 76 (1989).
    [30] P. L. Castro and B. E. Doal, “Low-temperature reduction of fast surface states associated with thermally oxidized silicon”, J. Electrochem. Soc. 118, 280 (1971).
    [31] P. C. T. Roberts and J. D. E. Beynon, “An experimental determination of the carrier lifetime near the Si-SiO2 interface”, Solid-State Electron. 16, 221 (1973).
    [32] M. Randolph and L. G. Meiners, “Hole mobilities and surface generation currents of CVD insulators on germanium”, J. Electrochem. Soc. 136, 2699 (1989).
    [33] J. C. Yu, B. C. Lai and J. Y. M. Lee, “Fabrication and characterization of metal-oxide-semiconductor field-effect transistors and gated diodes using Ta2O5 gate oxide”, IEEE Electron Device Lett. 21, 537 (2000).
    [34] F. C. Chiu, W. C. Shih, J. Y. M. Lee and H. L. Hwang, “An investigation of surface state capture cross-sections for metal-oxide-semiconductor field-effect transistors using HfO2 gate dielectrics”, Microelectron. Reliab. 47, 548 (2007).
    [35] C. H. Liu, P. C. Juan, C. P. Cheng, G. T. Lai, H. Lee, Y. K. Chen, Y. W. Liu and C. W. Hsu, “Interfacial and electrical properties of ultra-thin Y2O3 gate insulators”, Taiwan Association for Coatings and Thin Films Technology (TACT), C158 (2009).
    [36] C. H. Liu, P. C. Juan, C. P. Cheng, H. Lee, G. T. Lai, Y.K. Chen, Y. W. Liu and C. W. Hsu, “Structural properties of ultra-thin Y2O3 gate dielectrics studied by x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS)”, IEEE International NanoElectronics Conference (INEC), EP434 (2010).
    [37] P. C. Juan, C.H. Liu, C. P. Cheng, G. T. Lai, H. Lee, Y. K. Chen, Y. W Liu and C. W. Hsu, “Influence of O2/Ar ratio on electrical and structural properties of Al/CeAlO/p-Si MIS capacitors fabricated by RF sputtering”, International Union of Materials Research Societies - International Conference on Electronic Materials (IUMRS-ICEM), (2010).
    [38] 國家實驗研究院,真空技術與應用,儀器科技研究中心,2001。
    [39] 林麗娟,X 光繞射原理及其應用,工業材料86期,1994。
    [40] 陳力俊,材料電子顯微鏡學,精密儀器發展中心,1990。
    [41] 汪建民,材料分析,中國材料學會,1998。
    [42] 王敏昭、王明光,實用儀器分析,合記圖書出版社,2003。
    [43] 白木靖寬、吉田貞史,薄膜工程學,全華科技圖書股份有限公司,2003。

    無法下載圖示 本全文未授權公開
    QR CODE