簡易檢索 / 詳目顯示

研究生: 陳昭同
Chao-Tung Chen
論文名稱: Sorafenib衍生物抑制劑與B-Raf蛋白質複合體和GSK3β-GSKIPide複合體之分子動力學模擬:結合自由能計算及複合體結構分析
Molecular Dynamics Simulation of B-Raf Kinase-Sorafenib Derivative Inhibitors and GSK3β-GSKIPide complexes:Binding Energy Calculation and Structural Analysis
指導教授: 孫英傑
Sun, Ying-Chieh
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 73
中文關鍵詞: 衍生物抑制劑分子動力學蛋白質激酶
論文種類: 學術論文
相關次數: 點閱:128下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臨床統計上B-Raf 變異佔了人類所有癌症中的約7%,在黑色素瘤癌發現高達6成4有B-Raf 變異情形,其中B-Raf 變異以B-RafV600E為主要的變異型態。Sorafenib,在2005年被美國食品藥物管理局核准上市為B-Raf的標靶抑制劑,然而在臨床研究發現Sorafenib對
    B-Raf選擇性並不高且有溶解度低不足的部分,2008一篇合成B-Raf衍生物抑制劑文獻提出其合成出在保有與Sorafenib相近IC50卻有較高溶解度的抑制劑。我們選出構型差異為在Benzimidazoles環氮上取代基分別為氫原子跟甲基的兩組抑制劑化合物與B-RafV600E進行模擬,利用MMPBSA計算結合自由能及結構分析來探討其實驗IC50具明顯差異的可能原因,模擬結果發現在兩組取代基為甲基的抑制劑化合物皆比取代基為氫原子的抑制劑化合物在凡得瓦作用力上穩定3.5~6kcal/mol,結構分析也確定抑制劑化合物甲基位置是處於較疏水性的環境中,最後我們也對五組從Docking其他構型與B-RafV600E進行模擬,從能量結果顯示挑選Docking中Fitness 1抑制劑化合物構型當做MD模擬的初始構型程序是合適的。

    第一章 B-Raf與Sorafenib衍生物抑制劑複合體模擬.....................1 第一節 緒論…………………………………………………………..2 1-1 前言...............................................3 1-2 MAPK pathway 與標靶抑制劑..........................4 1-3 B-Raf kinase 變異..................................6 1-4 研究目標 ..........................................9 第二節 實驗與方法.......................................10 2-1 分子動力學模擬(Molecular dynamics)..................11 2-1-1 分子動力學模擬理論............................11 2-1-2 分子動力學模擬環境設定........................13 2-2 蛋白質結晶結構處理..................................14 2-2-1 胺基酸活化片段序列補足........................14 2-2-2 組胺酸構型調整................................17 2-3 能量計算............................................18 2-4 氫鍵分析設定.........................................19 第三節 結果與討論.......................................20 3-1四個Sorafenib衍生物抑制劑挑選.......................21 3-1-1 Docking產生初始抑制劑結構.....................23 3-1-2 Cheng-Prusoff equation近似....................24 3-2 B-RafV600E與BAY439006結合模擬結果討論................25 3-2-1 RMSD與RMSF...................................26 3-2-2 結合自由能計算 ...............................27 3-2-3 氫鍵分析 .....................................28 3-3 B-RafV600E與Sorafenib衍生物抑制劑系統能量及構型 比較................................................30 3-3-1 3-Br-bzle與3-Br-(N-methyl)bzle.........30 3-3-2 2-Br-bzle與2-Br-(N-methyl)bzle.........35 3-3-3 抑制劑化合物與鄰近疏水環境探討...............40 3-3-4 抑制劑化合物與Sorafenib 中carboxamide 構型比較.....................................41 3-4 衍生物抑制劑從分子嵌合產生的其他構型比較............43 第四節 結論..............................................48 第二章 GSK3β蛋白質激酶與GSKIPide複合體結合模式模擬……50 第一節 緒論............................................51 1-1 GSK3β跟Wnt 訊息傳遞路徑…………………………………52 1-2 GSK3β與三段胜肽鏈 Y2H細胞實驗…………………………55 1-3 研究目標............................................56 第二節 實驗與方法........................................57 2-1 蛋白質模擬環境系統設置………………………………………58 2-2 分子動力學模擬設定……………………………………………59 第三節 結果與討論......................................60 3-1 GSK3β-GSKIPide Cα RMSD...........................61 3-2 GSK3β-GSKIPide結構作用力分析.....................62 3-3 GSK3β-GSKIPide的V267G跟Y288 Cα RMSD 及結構作用力 分析...............................................63 3-4 GSKIPide、AxinGID及FRATide與GSK3β作用力比較 分析...............................................66 3-5 使用MMPBSA計算GSK3β-GSKIPide結合自由能 ......69 第四節 結論............................................70 參考文獻................................................71

    [1]L.A. Allan, P.R. Clarke, Apoptosis and autophagy: Regulation of caspase-9 by phosphorylation. Febs Journal 276 (2009) 6063-6073.
    [2]A. Duffy, S. Kummar, Targeting mitogen-activated protein kinase kinase (MEK) in solid tumors. Targeted Oncology 4 (2009) 267-273.
    [3]J.S. Sebolt-Leopold, R. Herrera, Targeting the mitogen-activated protein kinase cascade to treat cancer. Nature Reviews Cancer 4 (2004) 937-947.
    [4]C. Montagut, J. Settleman, Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Letters 283 (2009) 125-134.
    [5]L.F. Chang, M. Karin, Mammalian MAP kinase signalling cascades. Nature 410 (2001) 37-40.
    [6]A.A. Adjei, Blocking oncogenic Ras signaling for cancer therapy. Journal of the National Cancer Institute 93 (2001) 1062-1074.
    [7]K.K. Wong, Recent Developments in Anti-Cancer Agents Targeting the Ras/Raf/MEK/ERK Pathway. Recent Patents on Anti-Cancer Drug Discovery 4 (2009) 28-35.
    [8]J.S. Sebolt-Leopold, Advances in the development of cancer therapeutics directed against the RAS-mitogen-activated protein kinase pathway. Clinical Cancer Research 14 (2008) 3651-3656.
    [9]B.B. Friday, A.A. Adjei, Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clinical Cancer Research 14 (2008) 342-346.
    [10]S.S. Sridhar, D. Hedley, L.L. Siu, Raf kinase as a target for anticancer therapeutics. Molecular Cancer Therapeutics 4 (2005) 677-685.
    [11]P.T.C. Wan, M.J. Garnett, S.M. Roe, S. Lee, D. Niculescu-Duvaz, V.M. Good, C.M. Jones, C.J. Marshall, C.J. Springer, D. Barford, R. Marais, P. Cancer Genome, Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116 (2004) 855-867.
    [12]F.A. Karreth, D.A. Tuveson, Modelling oncogenic Ras/Raf signalling in the mouse. Current Opinion in Genetics & Development 19 (2009) 4-11.
    [13]C. Nucera, M. Goldfarb, R. Hodin, S. Parangi, Role of B-Raf(V600E) in differentiated thyroid cancer and preclinical validation of compounds against B-Raf(V600E). Biochimica Et Biophysica Acta-Reviews on Cancer 1795 (2009) 152-161.
    [14]E. Halilovic, D.B. Solit, Therapeutic strategies for inhibiting oncogenic BRAF signaling. Current Opinion in Pharmacology 8 (2008) 419-426.
    [15]F. Fratev, S.O. Jonsdottir, The phosphorylation specificity of B-RAF(WT), B-RAF(D594V), B-RAF(V600E) and B-RAF(K601E) kinases: An in silico study. Journal of Molecular Graphics & Modelling 28 (2010) 598-603.
    [16]J.F. Lyons, S. Wilhelm, B. Hibner, G. Bollag, Discovery of a novel Raf kinase inhibitor. Endocrine-Related Cancer 8 (2001) 219-225.
    [17]J. Tsai, J.T. Lee, W. Wang, J. Zhang, H. Cho, S. Mamo, R. Bremer, S. Gillette, J. Kong, N.K. Haass, K. Sproesser, L. Li, K.S.M. Smalley, D. Fong, Y.L. Zhu, A. Marimuthu, H. Nguyen, B. Lam, J. Liu, I. Cheung, J. Rice, Y. Suzuki, C. Luu, C. Settachatgul, R. Shellooe, J. Cantwell, S.H. Kim, J. Schlessinger, K.Y.J. Zhang, B.L. West, B. Powell, G. Habets, C. Zhang, P.N. Ibrahim, P. Hirth, D.R. Artis, M. Herlyn, G. Bollag, Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proceedings of the National Academy of Sciences of the United States of America 105 (2008) 3041-3046.
    [18]S. Ramurthy, S. Subramanian, M. Aikawa, P. Amiri, A. Costales, J. Dove, S. Fong, J.M. Jansen, B. Levine, S. Ma, C.M. McBride, J. Michaelian, T. Pick, D.J. Poon, S. Girish, C.M. Shafer, D. Stuart, L. Sung, P.A. Renhowe, Design and Synthesis of Orally Bioavailable Benzimidazoles as Raf Kinase Inhibitors. Journal of Medicinal Chemistry 51 (2008) 7049-7052.
    [19]J.-P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics 23 (1977) 327-341.
    [20]A. Nicholls, B. Honig, A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-Boltzmann equation. Journal of Computational Chemistry 12 (1991) 435-445.
    [21]J. Tomasi, M. Persico, Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chemical Reviews 94 (1994) 2027-2094.
    [22]D. Sitkoff, K.A. Sharp, B. Honig, Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models. The Journal of Physical Chemistry 98 (1994) 1978-1988.
    [23]J. Dietrich, V. Gokhale, X.D. Wang, L.H. Hurley, G.A. Flynn, Application of a novel 3+2 cycloaddition reaction to prepare substituted imidazoles and their use in the design of potent DFG-out allosteric B-Raf inhibitors. Bioorganic & Medicinal Chemistry 18 (2010) 292-304.
    [24]P. Cohen, S. Frame, The renaissance of GSK3. Nature Reviews Molecular Cell Biology 2 (2001) 769-776.
    [25]X.N. Tang, C.W. Lo, Y.C. Chuang, C.T. Chen, Y.C. Sun, Y.R. Hong, C.N. Yang, Prediction of the Binding Mode Between GSK3 beta and a Peptide Derived from GSKIP Using Molecular Dynamics Simulation. Biopolymers 95 (2011) 461-471.
    [26]C.M. Liu, Y.M. Li, M. Semenov, C. Han, G.H. Baeg, Y. Tan, Z.H. Zhang, X.H. Lin, X. He, Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108 (2002) 837-847.
    [27]L. Kim, A.R. Kimmel, GSK3, a master switch regulating cell-fate specification and tumorigenesis. Current Opinion in Genetics & Development 10 (2000) 508-514.
    [28]J.A. Bertrand, S. Thieffine, A. Vulpetti, C. Cristiani, B. Valsasina, S. Knapp, H.M. Kalisz, M. Flocco, Structural characterization of the GSK-3 beta active site using selective and non-selective ATP-mimetic inhibitors. Journal of Molecular Biology 333 (2003) 393-407.
    [29]R. Dajani, E. Fraser, S.M. Roe, M. Yeo, V.M. Good, V. Thompson, T.C. Dale, L.H. Pearl, Structural basis for recruitment of glycogen synthase kinase 3 beta to the axin-APC scaffold complex. Embo Journal 22 (2003) 494-501.
    [30]B. Bax, P.S. Carter, C. Lewis, A.R. Guy, A. Bridges, R. Tanner, G. Pettman, C. Mannix, A.A. Culbert, M.J.B. Brown, D.G. Smith, A.D. Reith, The structure of phosphorylated GSK-3 beta complexed with a peptide, FRATtide, that inhibits beta-catenin phosphorylation. Structure 9 (2001) 1143-1152.
    [31]K. Willert, S. Shibamoto, R. Nusse, Wnt-induced dephosphorylation of Axin releases beta-catenin from the Axin complex. Genes & Development 13 (1999) 1768-1773.
    [32]H.Y. Chou, S.L. Howng, T.S. Cheng, Y.L. Hsiao, A.S. Lieu, J.K. Loh, S.L. Hwang, C.C. Lin, C.M. Hsu, C. Wang, C.I. Lee, P.J. Lu, C.K. Chou, C.Y. Huang, Y.R. Hong, GSKIP is homologous to the Axin GSK3 beta interaction domain and functions as a negative regulator of GSK3 beta. Biochemistry 45 (2006) 11379-11389.
    [33]C.C. Lin, C.H. Chou, S.L. Howng, C.Y. Hsu, C.C. Hwang, C.H. Wang, C.M. Hsu, Y.R. Hong, GSKIP, an Inhibitor of GSK3 beta, Mediates the N-Cadherin/beta-Catenin Pool in the Differentiation of SH-SY5Y Cells. Journal of Cellular Biochemistry 108 (2009) 1325-1336.
    [34]S.L. Howng, C.C. Hwang, C.Y. Hsu, M.Y. Hsu, C.Y. Teng, C.H. Chou, M.F. Lee, C.H. Wu, S.J. Chiou, A.S. Lieu, J.K. Loh, C.N. Yang, C.S. Lin, Y.R. Hong, Involvement of the residues of GSKIP, AxinGID, and FRATtide in their binding with GSK3 beta to unravel a novel C-terminal scaffold-binding region. Molecular and Cellular Biochemistry 339 (2010) 23-33.

    無法下載圖示 本全文未授權公開
    QR CODE