研究生: |
張家慈 Chang, Chia-Tzu |
---|---|
論文名稱: |
以 AGE-MOEA-II與改良版環境選擇求解多目標最佳化問題 Evolutionary Multiobjective Optimization using AGE-MOEA-II with Improved Environmental Selection |
指導教授: |
蔣宗哲
Chiang, Tsung-Che |
口試委員: |
蔣宗哲
Chiang, Tsung-Che 鄒慶士 Tsou, Ching-Shih 廖容佐 Liaw, Rung-Tzuo |
口試日期: | 2024/07/17 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 演化演算法 、多目標最佳化 、柏拉圖前緣估計 |
英文關鍵詞: | Evolutionary algorithms, Multiobjective optimization, Shape Estimation of Pareto front |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401594 |
論文種類: | 學術論文 |
相關次數: | 點閱:78 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多目標最佳化問題是現實應用的常見形式,求解問題時需要同時考慮多個目標之間的取捨關係。多目標演化演算法是求解多目標最佳化問題的常用方法,這類演算法中的關鍵機制就是平衡解族群的收斂性和多樣性。在近年發表的演算法中,AGE-MOEA-II 演算法通過估計柏拉圖前緣的形狀,並依形狀來定義解的多樣性和收斂性,展現了出色的效能表現。然而AGE-MOEA-II 仍有其值得改進之處,本論文結合了其它現有演算法的設計,一方面刪減無益於收斂性的解個體,一方面修改其應對凸型柏拉圖前緣時的多樣性評估機制。我們使用 13 個公開測試函式進行實驗,實驗結果顯示本論文所引入的機制可有效提升求解品質;與六個現有演算法相比,本論文所提出的改良版 AGE-MOEA-II 在兩項常見的效能指標 IGD 與 HV 都有更好的表現。
Many real-world problems fall under the category of multiobjective optimization problems. Solving such problems requires considering trade-offs among multiple objectives simultaneously. Multiobjective evolutionary algorithms (MOEAs) are widely used for solving these problems, and the core design in these algorithms lies in balancing convergence and diversity during the search process. Among recent algorithms, AGE-MOEA-II has demonstrated promising performance by estimating the shape of the Pareto front and defining solution diversity and convergence accordingly. However, there remains room for improvement in AGE-MOEA-II. In this thesis, we improve AGE-MOEA-II by integrating the mechanisms of two other existing algorithms: one mechanism aims to remove solutions that contribute little convergence, and the other mechanism improves the diversity measure in the case of convex Pareto fronts. The performance of the proposed improved AGE-MOEA-II was verified by comparing it with six existing algorithms in solving 13 public test functions (MaF1-13). Experimental results showed that our proposed algorithm performed better regarding two popular indicators, IGD and HV.
Y. Hua, Q. Liu, K. Hao, and Y. Jin, “A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts,” IEEE/CAA J. Automatica Sinica, vol. 8, no. 2, pp. 303–318, Feb. 2021.
A. Panichella, “An improved Pareto front modeling algorithm for largescale many-objective optimization,” in Proc. Genet. Evol. Comput. Conf., pp. 565–573, 2022.
Z. Liu, F. Han, Q. Ling, H. Han, J. Jiang, “A many-objective optimization evolutionary algorithm based on hyper-dominance degree,” Swarm Evol. Comput, vol. 83, no. 101411, 2023.
X. Ma, Y. Yu, and X. Li, “A survey of weight vector adjustment methods for decomposition-based multiobjective evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 24, no. 4, pp. 634–649, Aug. 2020.
H. Ishibuchi and T. Murata, “A multi-objective genetic local search algorithm and its application to flowshop scheduling,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 28, no. 3, pp. 392–403, Aug. 1998.
Y. Jin, T. Okabe, and B. Sendhoff, “Dynamic weighted aggregation of evolutionary multi-objective optimization: Why does it work and how?” in Proc. Int. Conf. Evol. Multi Crit. Optim., pp. 1042–1049, 2001.
R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector guided evolutionary algorithm for many-objective optimization,” IEEE Trans. Evol. Comput., vol. 20, no. 5, pp. 773–791, Oct. 2016.
F. Q. Gu and H.-L. Liu, “A novel weight design in multi-objective evolutionary algorithm,” in Proc. Int. Conf. Comput. Intell. Security, pp. 137–141, 2010.
S. Jiang, Z. Cai, J. Zhang, and Y. S. Ong, “Multiobjective optimization by decomposition with Pareto-adaptive weight vectors,” in Proc. Int. Conf. Nat. Comput., pp. 1260–1264, 2011.
H.-L. Liu, L. Chen, Q. Zhang, and K. Deb, “Adaptively allocating search effort in challenging many-objective optimization problems,” IEEE Trans. Evol. Comput., vol. 22, no. 3, pp. 433–448, Jun. 2018.
H. Zhao, C. Zhang, B. Zhang, P. Duan, and Y. Yang, “Decomposition based sub-problem optimal solution updating direction-guided evolutionary many-objective algorithm,” Inf. Sci., vols. 448–449, pp. 91–111, Jun. 2018.
Q. Liu, Y. Jin, M. Heiderich, and T. Rodemann, “Adaptation of reference vectors for evolutionary many-objective optimization of problems with irregular Pareto fronts,” in Proc. IEEE Congr. Evol. Comput. (CEC), pp. 1726–1733, 2019.
Q. Liu, Y. Jin, M. Heiderich, T. Rodemann, Coordinated adaptation of reference vectors and scalarizing functions in evolutionary many-objective optimization, IEEE Trans. Syst. Man Cybern., vol. 53, no. 2, pp. 763–775. 2023.
Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu, “MOEA/D with adaptive weight adjustment,” Evol. Comput., vol. 22, no. 2, pp. 231–264, 2014.
M. Li and X. Yao, ‘‘What weights work for you? Adapting weights for any Pareto front shape in decomposition-based evolutionary multiobjective optimisation,’’ Evol. Comput., vol. 28, no. 2, pp. 227–253, Jun. 2020.
L. R. de Farias and A. F. Araújo, “A decomposition-based manyobjective evolutionary algorithm updating weights when required,” Swarm Evol. Comput., vol. 68, Feb. 2022, Art. no. 100980.
Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. Jin, “An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility,” IEEE Trans. Evol. Comput., vol. 22, no. 4, pp. 609–622, Aug. 2018.
C. Zhang, K. C. Tan, L. H. Lee, and L. Gao, “Adjust weight vectors in MOEA/D for bi-objective optimization problems with discontinuous Pareto fronts,” Soft Comput., vol. 22, no. 12, pp. 3997–4012, 2018.
X. Cai, Z. Mei, and Z. Fan, “A decomposition-based many-objective evolutionary algorithm with two types of adjustments for direction vectors,” IEEE Trans. Cybern., vol. 48, no. 8, pp. 1–14, Aug. 2018.
W. Q. Feng and D. W. Gong, “ Multi-objective evolutionary optimization with objective space partition based on online perception of Pareto front,” Acta Autom. Sinica, vol.46, no.8, pp. 1628–1643, Sep. 2020.
X. Y. Cai, Z. W. Mei, Z. Fan, and Q. F. Zhang, “ A constrained decomposition approach with grids for evolutionary multiobjective optimization,” IEEE Trans. Evolut. Comput. , vol.22, no. 4, pp. 564–577, Aug. 2018.
F. Han, Z. Liu, Q-H. Ling, H. Han, J. Jiang and Y. Wang, “A Multi-Objective Evolutionary Algorithm Based on Adaptive Grid for Multi-Objective Optimization with Irregular Pareto Fronts.” Available at SRN: https://ssrn.com/abstract=4532666 .
H. Zhang, S. M. Song, A. M. Zhou, and X. Z. Gao, “ A clustering based multiobjective evolutionary algorithm, ” in Proc. IEEE Congr. Evolutionary Computation, Beijing, China, pp. 723–730, 2014.
S. S. Das, M. M. Islam, and N. A. Arafat, “ Evolutionary algorithm using adaptive fuzzy dominance and reference point for many objective optimization,” Swarm Evolut. Comput. , vol.44, pp. 1092–1107, Feb. 2019.
I. Das and J. E. Dennis, “Normal-Boundary Intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems,” SIAM Journal on Optimization, vol. 8, pp. 631–657, 1998.
Denysiuk, L. Costa, and I. E. Santo, “Clustering-based selection for evolutionary many-objective optimization, ” in Proc. Int. Conf. Parallel Problem Solving from Nature. Ljubljana, Slovenia: Springer, pp. 538–547, 2014.
Q. Z. Lin, S. B. Liu, K. C. Wong, M. G. Gong, C. A. C. Coello, J. Y. Chen, and J. Zhang, “ A clustering-based evolutionary algorithm for many-objective optimization problems,” IEEE Trans. Evolut. Comput., vol.23, no.3, pp.391–405, Jun. 2019.
S. B. Liu et al., “A self-guided reference vector strategy for many-objective optimization,” IEEE Trans. Cybern., vol. 52, no. 2, pp. 1164–1178, Feb. 2022.
Y. Xiang, Y. Zhou, M. Li, and Z. Chen, “A vector angle-based evolutionary algorithm for unconstrained many-objective optimization,” IEEE Trans. Evol. Comput., vol. 21, no. 1, pp. 131–152, Feb. 2017.
J. Yuan, H. L. Liu, F. Gu, et al. “Investigating the properties of indicators and an evolutionary many-objective algorithm using promising regions,” IEEE Transactions on Evolutionary Computation, vol. 25, no.1, pp. 75-86, 2020.
A. Panichella, “An adaptive evolutionary algorithm based on noneuclidean geometry for many-objective optimization,” in Proc. Genet. Evol. Comput. Conf., pp. 595– 603, 2019.
X. He, Y. Zhou, Z. Chen, and Q. Zhang, “Evolutionary many-objective optimization based on dynamical decomposition,” IEEE Trans. Evol. Comput., vol. 23, no. 3, pp. 361–375, Jun. 2019.
S. Liu, Q. Lin, K. C. Tan, M. Gong, and C. A. Coello Coello, “A fuzzy decomposition-based multi/many-objective evolutionary algorithm,” IEEE Trans. Cybern., vol. 52, no. 5, pp. 3495–3509, May 2022.
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ,” IEEE Trans. Evolut. Comput., vol.6, no.2, pp.182–197, Apr. 2002.
Deb K, Agrawal RB, “Simulated binary crossover for continuous search space,” Complex Syst., vol. 9, no.2, pp.115–48, 1995.
Deb K, Deb D., “Analysing mutation schemes for real-parameter genetic algorithms,” Int J Artif Intell Soft Comput, vol 4, no.1, pp. 1–28, 2014.
R. Cheng, M. Li, Y. Tian et al., “A benchmark test suite for evolutionary many-objective optimization,” Complex Intell. Syst, vol. 3, no. 1, pp. 67–81, 2017.
J. G. Falcón-Cardona and C. A. C. Coello. Indicator-based multiobjective evolutionary algorithms: A comprehensive survey. ACM Comput. Surv., 53(2), pp29:1–29:35. 2021.
H. Ishibuchi, R. Imada, N. Masuyama, and Y. Nojima, Comparison of hypervolume, IGD and IGDC from the viewpoint of optimal distributions of solutions, in Proc. 10th Int. Conf. Evolutionary Multi-Criterion Optimization, East Lansing, MI, USA, pp. 332–345, 2019.
Liu SB, Yu QY, Lin QZ, Tan KC, An adaptive clustering-based evolutionary algorithm for many-objective optimization problems. Inf Sci, vol. 537, no. 1, pp.261–283, 2020.
Zitzler E, Thiele L, Laumanns M, Fonseca C, da Fonseca V, Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput vol. 7, no. 2, pp. 117–132, 2003.