研究生: |
彭淑敏 Peng, Shu-Min |
---|---|
論文名稱: |
客製化三維列印鞋墊對於扁平足者平衡及行走功能之成效 Customized 3D Printed Insole for Persons with Flat Foot: The Outcome of Balance and Walking Function |
指導教授: |
佘永吉
Sher, Yung-Ji |
口試委員: |
洪榮昭
Hong, Jon-Chao 陳振昇 Chen, Chen-Sheng 佘永吉 Sher, Yung-Ji |
口試日期: | 2023/11/06 |
學位類別: |
碩士 Master |
系所名稱: |
復健諮商研究所 Graduate Institute of Rehabilitation Counseling |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 扁平足 、3D列印鞋墊 、平衡測試 、足底壓力量測 |
英文關鍵詞: | Flat foot, 3D printed insoles, balance test, Footscan Pressure Measurement systems |
研究方法: | 準實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202400010 |
論文種類: | 學術論文 |
相關次數: | 點閱:101 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
扁平足(Flat foot)是一種會影響到日常功能行走表現的一種診斷之一,這個診斷可能會造成足部疼痛,步態異常,也可能會影響到平衡與協調能力,間接影響其他骨骼相關疾病,而根據生物力學原理,鞋墊可減少變形,預防或治療腳和下肢的疾病,但礙於特製鞋墊單價都過於高,使扁平足個案卻步。此研究是想藉由3D列印其特性特別適合應用於小量客製化的需求,能針對各種困難的情境做出相應的設計,因此將運用3D列印材質可塑性,與成本效益的可行性,且結合所學領域專業,依照受試者行走習慣量身打造個別化鞋墊。
本研究採取準實驗研究設計,取扁平足的人穿著長時間3D列印鞋墊為實驗組,而對照組為穿3D列印鞋墊短時間的的扁平足個案,探討十二週日常生活對於兩組不同鞋墊之動作影響。課程開始前一週,實驗組與對照組皆進行動作評估前側,且實驗組會先採取足模來製作3D列印鞋墊;實驗期間兩組皆參與功能性動作介入;第九週,則對實驗組與對照組進行動作訓練評估後測,以無母數檢定Kruskal-Wallis考驗實驗組與對照組之動作精煉度。
本研究結論如下:
一、 本研究探討3D列印技術適合個別化設計與發展鞋墊,在第二三四趾骨區域壓力達到統計上的顯著下降。
二、 扁平足個案使用3D列印鞋墊走路速度有提升且有顯著上的差異。
穿著個別化定製鞋是可幫助改變足底壓力異常分佈的最常見方法。
三、 扁平足受試者使用3D列印鞋墊的平衡成效,其研究結果部分個案表示3D列印鞋墊可提升其平衡能力,但全體前後平均未達顯著差異。
研究除了數據分析外,最終依據研究結果提供未來研究相關研究執行及相關建議。
Flat foot is one of the diagnoses that can affect daily functional walking performance. This diagnosis may cause foot pain, abnormal gait, and may also affect balance and coordination, and indirectly affect other bone-related conditions. According to biomechanical principles, insoles can reduce deformation and prevent or treat diseases of the feet and lower limbs. However, the unit price of specially made insoles is too high, which discourages flat foot cases. This research aims to use the characteristics of 3D printing to be particularly suitable for small-volume customization needs and to make corresponding designs for various difficult situations. Therefore, the plasticity of 3D printing materials will be used to achieve cost-effectiveness. Personalized insoles are tailor-made according to the subject’s walking habits based on the field of study.
This study adopts a quasi-experimental research design. People with flat feet wear 3D printed insoles for a long time as the experimental group, while the control group consists of flat foot cases who wear 3D printed insoles for a short time. The effect of twelve weeks of daily life on the two groups of different insoles is explored. The action affects. One week before the start of the course, both the experimental group and the control group conducted movement assessment on the front side, and the experimental group first took foot molds to make 3D printed insoles. During the experiment, both groups participated in functional movement intervention; in the ninth week, the experimental group The movement training evaluation post-test of the experimental group and the control group was conducted, and the Kruskal-Wallis test was used to test the movement refinement of the experimental group and the control group.
The conclusions of this study are as follows:
1. This study explores the suitability of 3D printing technology for personalized design and development of insoles, which achieves a statistically significant reduction in pressure in the second, third and fourth phalangeal areas.
2. The walking speed of flat foot cases using 3D printed insoles is improved and there is a significant difference.
Wearing individually tailored shoes is the most common method that can help change the abnormal distribution of pressure on the bottom of the foot.
3. The balance effect of flat-footed subjects using 3D printed insoles. The research results showed that 3D printed insoles can improve their balance ability in some cases, but the overall average difference before and after did not reach a significant difference.
In addition to data analysis, the research ultimately provides relevant research implementation and related suggestions for future research based on the research results.
沈育芳、謝明佑、陳怡文(2019)。3D 成型技術之介紹與應用
許家宜(2022)。比較扁平足穿著不同設計3D列印鞋墊對下肢之生物力學影響
陳沛裕、楊榮森(2019)。3D列印在足踝外科的應用。台灣醫學
陳宛榆(2020)。3D列印印前技術之研究
楊榮森(2019)。3D 列印科技的原理與應用。台灣醫學
謝玉鈴(2016)。新技術、新思維、新趨勢: 3D 列印技術於博物館領域之應用
Allam, H. H., Muhsen, A., Al-Walah, M. A., Alotaibi, A. N., Alotaibi, S. S., & Elsayyad, L. K. (2021). Effects of plyometric exercises versus flatfoot corrective exercises on postural control and foot posture in obese children with a flexible flatfoot. Applied Bionics and Biomechanics, 2021, 3635660. https://doi.org/10.1155/2021/3635660
Arain, A., Harrington, M. C., & Rosenbaum, A. J. (2022). Adult acquired flatfoot. In StatPearls. StatPearls Publishing.
Bac, A., Kaczor, S., Pasiut, S., Ścisłowska-Czarnecka, A., Jankowicz-Szymańska, A., & Filar-Mierzwa, K. (2022). The influence of myofascial release on pain and selected indicators of flat foot in adults: a controlled randomized trial. Scientific Reports, 12(1), 1414. https://doi.org/10.1038/s41598-022-05401-w
Benedetti, M. G., Ceccarelli, F., Berti, L., Luciani, D., Catani, F., Boschi, M., & Giannini, S. (2011). Diagnosis of flexible flatfoot in children: a systematic clinical approach. Orthopedics, 34(2), 94. https://doi.org/10.3928/01477447-20101221-04
Blodgett, J. M., Hardy, R., Davis, D. H. J., Peeters, G., Hamer, M., Kuh, D., & Cooper, R. (2023). Prognostic accuracy of the one-legged balance test in predicting falls: 15-years of midlife follow-up in a British birth cohort study. Frontiers in Sports and Active Living, 4, 1066913. https://doi.org/10.3389/fspor.2022.1066913
Bronstein A. M. (2016). Multisensory integration in balance control. Handbook of Clinical Neurology, 137, 57–66. https://doi.org/10.1016/B978-0-444-63437-5.00004-2
Buldt, A. K., Forghany, S., Landorf, K. B., Levinger, P., Murley, G. S., & Menz, H. B. (2018). Foot posture is associated with plantar pressure during gait: A comparison of normal, planus and cavus feet. Gait & Posture, 62, 235–240. https://doi.org/10.1016/j.gaitpost.2018.03.005
Cha, Y. H., Lee, K. H., Ryu, H. J., Joo, I. W., Seo, A., Kim, D. H., & Kim, S. J. (2017). Ankle-Foot Orthosis Made by 3D printing technique and automated design software. Applied Bionics and Biomechanics, 2017, 9610468. https://doi.org/10.1155/2017/9610468
Choo, Y. J., Boudier-Revéret, M., & Chang, M. C. (2020). 3D printing technology applied to orthosis manufacturing: narrative review. Annals of Palliative Medicine, 9(6), 4262–4270. https://doi.org/10.21037/apm-20-1185
Chou, M. C., Huang, J. Y., Hung, Y. M., Perng, W. T., Chang, R., & Wei, J. C. (2021). Flat foot and spinal degeneration: Evidence from nationwide population-based cohort study. Journal of the Formosan Medical Association = Taiwan yi zhi, 120(10), 1897–1906. https://doi.org/10.1016/j.jfma.2020.12.019
de Morais Barbosa, C., Bértolo, M. B., Gaino, J. Z., Davitt, M., Sachetto, Z., & de Paiva Magalhães, E. (2018). The effect of flat and textured insoles on the balance of primary care elderly people: a randomized controlled clinical trial. Clinical Interventions In Aging, 13, 277–284. https://doi.org/10.2147/CIA.S149038
Desmyttere, G., Leteneur, S., Hajizadeh, M., Bleau, J., & Begon, M. (2020). Effect of 3D printed foot orthoses stiffness and design on foot kinematics and plantar pressures in healthy people. Gait & Posture, 81, 247–253. https://doi.org/10.1016/j.gaitpost.2020.07.146
Dombroski, C. E., Balsdon, M. E., & Froats, A. (2014). The use of a low cost 3D scanning and printing tool in the manufacture of custom-made foot orthoses: a preliminary study. BMC Research Notes, 7, 443. https://doi.org/10.1186/1756-0500-7-443
Gould N. (1982). Graphing the adult foot and ankle. Foot & Ankle, 2(4), 213–219. https://doi.org/10.1177/107110078200200407
Guskiewicz K M, Perrin D H. Research and clinical applications of assessing balance. J Sport Rehabil. 1996;5:45–63.
H.J. Hillstrom, J. Song, A.P. Kraszewski, J.F. Hafer, R. Mootanah, A.B. Dufour, B.S. Chow, J.T. Deland
Han J.T., Koo H.M., Jung J.M., Kim Y.J., Lee J.H. Differences in Plantar Foot Pressure and COP between Flat and Normal Feet during Walking. J. Phys. Ther. Sci. 2011;23:683–685. doi: 10.1589/jpts.23.683.
Ho, M., Nguyen, J., Heales, L., Stanton, R., Kong, P. W., & Kean, C. (2022). The biomechanical effects of 3D printed and traditionally made foot orthoses in individuals with unilateral plantar fasciopathy and flat feet. Gait & Posture, 96, 257–264. Advance online publication. https://doi.org/10.1016/j.gaitpost.2022.06.006
https://doi.org/10.1053/j.jfas.2017.12.019.
https://doi.org/10.1186/s13047-014-0044-7
Jiang, Y., Wang, D., Ying, J., Chu, P., Qian, Y., & Chen, W. (2021). Design and preliminary validation of individual customized insole for adults with flexible flatfeet based on the plantar pressure Redistribution. Sensors (Basel, Switzerland), 21(5), 1780. https://doi.org/10.3390/s21051780
Jin, H., Xu, R., Wang, S., & Wang, J. (2019). Use of 3D-printed heel support insoles based on arch lift improves foot pressure distribution in healthy people. Medical Science Monitor :Iinternational Medical Journal of Experimental and Clinical Research, 25, 7175–7181. https://doi.org/10.12659/MSM.918763
Kim, E. K., & Kim, J. S. (2016). The effects of short foot exercises and arch support insoles on improvement in the medial longitudinal arch and dynamic balance of flexible flatfoot patients. Journal of Physical Therapy Science, 28(11), 3136–3139. https://doi.org/10.1589/jpts.28.3136
Kirmizi, M., Cakiroglu, M. A., Elvan, A., Simsek, I. E., & Angin, S. (2020). Reliability of different clinical techniques for assessing foot posture. Journal of Manipulative and Physiological Therapeutics, 43(9), 901–908. https://doi.org/10.1016/j.jmpt.2020.02.002
Klöpfer-Krämer, I., Brand, A., Wackerle, H., Müßig, J., Kröger, I., & Augat, P. (2020). Gait analysis - Available platforms for outcome assessment. Injury, 51 Suppl 2, S90–S96. https://doi.org/10.1016/j.injury.2019.11.011
Lee, J. S., Kim, K. B., Jeong, J. O., Kwon, N. Y., & Jeong, S. M. (2015). Correlation of foot posture index with plantar pressure and radiographic measurements in pediatric flatfoot. Annals of Rehabilitation medicine, 39(1), 10–17. https://doi.org/10.5535/arm.2015.39.1.10
Lee, Y. C., Lin, G., & Wang, M. J. (2014). Comparing 3D foot scanning with conventional measurement methods. Journal of Foot and Ankle Research, 7(1), 44.
Lin, K. W., Hu, C. J., Yang, W. W., Chou, L. W., Wei, S. H., Chen, C. S., & Sun, P. C. (2019). Biomechanical evaluation and strength test of 3D-printed foot orthoses. Applied Bionics and Biomechanics, 2019, 4989534. https://doi.org/10.1155/2019/4989534
MacKinnon C. D. (2018). Sensorimotor anatomy of gait, balance, and falls. Handbook of Clinical Neurology, 159, 3–26. https://doi.org/10.1016/B978-0-444-63916-5.00001-X
Miranda-Cantellops, N., & Tiu, T. K. (2022). berg balance testing. In StatPearls. StatPearls Publishing.
Mirelman, A., Shema, S., Maidan, I., & Hausdorff, J. M. (2018). Gait. Handbook of Clinical Neurology, 159, 119–134. https://doi.org/10.1016/B978-0-444-63916-5.00007-0
Murley, G. S., Menz, H. B., & Landorf, K. B. (2009). A protocol for classifying normal- and flat-arched foot posture for research studies using clinical and radiographic measurements. Journal of Foot and Ankle Research, 2, 22. https://doi.org/10.1186/1757-1146-2-22
Neuls, Patrick D. PT, DPT 1;Clark, Tammie L. PT, DPT 2;Van Heuklon,Nicole C. PT,DPT 3;Proctor, Joy E. PT 4;Kilker, Barbra J. PT, DPT 5;比伯,馬洛里 E. PT 6;Donlan, Alice V. PT, DPT, MBA 7 ; Carr-Jules, Suchitha A. PT, DPT 8;Neidel, William H. PT, DPT 9;Newton, Roberta A. PT,博士5. Berg 平衡量表預測老年人跌倒的有用性. 老年物理治療雜誌: 2011 年 1 月/3 月 - 第 34 卷 - 第 1 期 - 第 3-10 頁 doi: 10.1097/JPT.0b013e3181ff2b0e
Nilsson, M. K., Friis, R., Michaelsen, M. S., Jakobsen, P. A., & Nielsen, R. O. (2012). Classification of the height and flexibility of the medial longitudinal arch of the foot. Journal of Foot and Ankle Research, 5, 3. https://doi.org/10.1186/1757-1146-5-3
Noguchi, T., Hirao, M., Tsuji, S., Ebina, K., Tsuboi, H., Etani, Y., Akita, S., & Hashimoto, J. (2021). Association of decreased physical activity with rheumatoid mid-hindfoot deformity/Destruction. International Journal Of Environmental Research and Public Health, 18(19), 10037. https://doi.org/10.3390/ijerph181910037
Paul S. Sung, PhD, DHSc, PT. (2018)The Sensitivity of Thresholds by Ground Reaction Force and Postural Stability in Subjects With and Without Navicular Drophttps://doi.org/10.1053/j.jfas.2017.12.019 ISSN 1067-2516,
Rosenberg Z.S. Chronic rupture of the posterior tibial tendon. Magn. Reson. Imaging Clin. N. Am. 1994;2(1):79–87.
Şahin, F. N., Ceylan, L., Küçük, H., Ceylan, T., Arıkan, G., Yiğit, S., Sarşık, D. Ç., & Güler, Ö. (2022). Examining the relationship between pes planus degree, balance and jump performances in athletes. International Journal of Environmental Research and Public Health, 19(18), 11602. https://doi.org/10.3390/ijerph191811602
Sarikhani, A., Motalebizadeh, A., Asiaei, S., & Kamali Doost Azad, B. (2016). Studying maximum plantar stress per insole design using foot CT-Scan images of hyperelastic soft tissues. Applied Bionics and Biomechanics, 2016, 8985690. https://doi.org/10.1155/2016/8985690
Su, S., Mo, Z., Guo, J., & Fan, Y. (2017). The Effect of Arch Height and Material Hardness of Personalized Insole on Correction and Tissues of Flatfoot. Journal of Healthcare Engineering, 2017, 8614341. https://doi.org/10.1155/2017/8614341
Subotnick SI. The biomechanics of running: implications for the prevention of foot injuries. Sports Med. 1985;2(2):144–153. doi: 10.2165/00007256-198502020-00006.
Tarrade, T., Doucet, F., Saint-Lô, N., Llari, M., & Behr, M. (2019). Are custom-made foot orthoses of any interest on the treatment of foot pain for prolonged standing workers?. Applied Ergonomics, 80, 130–135. https://doi.org/10.1016/j.apergo.2019.05.013
Telfer, S., & Woodburn, J. (2010). The use of 3D surface scanning for the measurement and assessment of the human foot. Journal of Foot and Ankle Research, 3, 19. https://doi.org/10.1186/1757-1146-3-19
Telfer, S., Woodburn, J., Collier, A., & Cavanagh, P. R. (2017). Virtually optimized insoles for offloading the diabetic foot: A randomized crossover study. Journal of Biomechanics, 60, 157–161. https://doi.org/10.1016/j.jbiomech.2017.06.028
Verlekar, T. T., Soares, L. D., & Correia, P. L. (2018). Automatic classification of gait impairments using a markerless 2D video-based system. Sensors (Basel, Switzerland), 18(9), 2743. https://doi.org/10.3390/s18092743
Vimal, A. K., Sharma, S., Gahlawat, B., Pandian, G., & Sural, S. (2022). The effect of customized and silicon insoles on mid- and hindfoot in adult flexible pes planovalgus. Indian Journal of Orthopaedics, 56(11), 1897–1905. https://doi.org/10.1007/s43465-022-00699-0
Wright, Cynthia J.Arnold, Brent L.a Coffey, Timothy G.a Pidcoe, Peter E.(2019). Repeatability of the Modified Oxford Foot Model During Gait in Healthy Adults, DOI.
Xu, C., Wen, XX., Huang, LY. et al. Normal Foot Loading Parameters and Repeatability of the Footscan® Platform System. J Foot Ankle Res 10, 30 (2017). Https://Doi.Org/10.1186/S13047-017-0209-2. (n.d.).
Xu, R., Wang, Z., Ma, T., Ren, Z., & Jin, H. (2019). Effect of 3D printing individualized Ankle-Foot Orthosis on Plantar Biomechanics and Pain in patients with plantar fasciitis: A randomized controlled trial. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 25, 1392–1400. https://doi.org/10.12659/MSM.915045
Xu, R., Wang, Z., Ren, Z., Ma, T., Jia, Z., Fang, S., & Jin, H. (2019). Comparative study of the effects of customized 3D printed insole and prefabricated insole on plantar pressure and comfort in patients with symptomatic flatfoot. Medical Science Monitor : International medical Journal of Eexperimental And Clinical Research, 25, 3510–3519. https://doi.org/10.12659/MSM.916975